Abstract:The increasing prevalence of video clips has sparked growing interest in text-video retrieval. Recent advances focus on establishing a joint embedding space for text and video, relying on consistent embedding representations to compute similarity. However, the text content in existing datasets is generally short and concise, making it hard to fully describe the redundant semantics of a video. Correspondingly, a single text embedding may be less expressive to capture the video embedding and empower the retrieval. In this study, we propose a new stochastic text modeling method T-MASS, i.e., text is modeled as a stochastic embedding, to enrich text embedding with a flexible and resilient semantic range, yielding a text mass. To be specific, we introduce a similarity-aware radius module to adapt the scale of the text mass upon the given text-video pairs. Plus, we design and develop a support text regularization to further control the text mass during the training. The inference pipeline is also tailored to fully exploit the text mass for accurate retrieval. Empirical evidence suggests that T-MASS not only effectively attracts relevant text-video pairs while distancing irrelevant ones, but also enables the determination of precise text embeddings for relevant pairs. Our experimental results show a substantial improvement of T-MASS over baseline (3% to 6.3% by R@1). Also, T-MASS achieves state-of-the-art performance on five benchmark datasets, including MSRVTT, LSMDC, DiDeMo, VATEX, and Charades.
Abstract:We introduce the novel Diffusion Visual Programmer (DVP), a neuro-symbolic image translation framework. Our proposed DVP seamlessly embeds a condition-flexible diffusion model within the GPT architecture, orchestrating a coherent sequence of visual programs (i.e., computer vision models) for various pro-symbolic steps, which span RoI identification, style transfer, and position manipulation, facilitating transparent and controllable image translation processes. Extensive experiments demonstrate DVP's remarkable performance, surpassing concurrent arts. This success can be attributed to several key features of DVP: First, DVP achieves condition-flexible translation via instance normalization, enabling the model to eliminate sensitivity caused by the manual guidance and optimally focus on textual descriptions for high-quality content generation. Second, the framework enhances in-context reasoning by deciphering intricate high-dimensional concepts in feature spaces into more accessible low-dimensional symbols (e.g., [Prompt], [RoI object]), allowing for localized, context-free editing while maintaining overall coherence. Last but not least, DVP improves systemic controllability and explainability by offering explicit symbolic representations at each programming stage, empowering users to intuitively interpret and modify results. Our research marks a substantial step towards harmonizing artificial image translation processes with cognitive intelligence, promising broader applications.
Abstract:Annotating automatic target recognition (ATR) is a highly challenging task, primarily due to the unavailability of labeled data in the target domain. Hence, it is essential to construct an optimal target domain classifier by utilizing the labeled information of the source domain images. The transductive transfer learning (TTL) method that incorporates a CycleGAN-based unpaired domain translation network has been previously proposed in the literature for effective ATR annotation. Although this method demonstrates great potential for ATR, it severely suffers from lower annotation performance, higher Fr\'echet Inception Distance (FID) score, and the presence of visual artifacts in the synthetic images. To address these issues, we propose a hybrid contrastive learning base unpaired domain translation (H-CUT) network that achieves a significantly lower FID score. It incorporates both attention and entropy to emphasize the domain-specific region, a noisy feature mixup module to generate high variational synthetic negative patches, and a modulated noise contrastive estimation (MoNCE) loss to reweight all negative patches using optimal transport for better performance. Our proposed contrastive learning and cycle-consistency-based TTL (C3TTL) framework consists of two H-CUT networks and two classifiers. It simultaneously optimizes cycle-consistency, MoNCE, and identity losses. In C3TTL, two H-CUT networks have been employed through a bijection mapping to feed the reconstructed source domain images into a pretrained classifier to guide the optimal target domain classifier. Extensive experimental analysis conducted on three ATR datasets demonstrates that the proposed C3TTL method is effective in annotating civilian and military vehicles, as well as ship targets.
Abstract:The area of Video Camouflaged Object Detection (VCOD) presents unique challenges in the field of computer vision due to texture similarities between target objects and their surroundings, as well as irregular motion patterns caused by both objects and camera movement. In this paper, we introduce TokenMotion (TMNet), which employs a transformer-based model to enhance VCOD by extracting motion-guided features using a learnable token selection. Evaluated on the challenging MoCA-Mask dataset, TMNet achieves state-of-the-art performance in VCOD. It outperforms the existing state-of-the-art method by a 12.8% improvement in weighted F-measure, an 8.4% enhancement in S-measure, and a 10.7% boost in mean IoU. The results demonstrate the benefits of utilizing motion-guided features via learnable token selection within a transformer-based framework to tackle the intricate task of VCOD.
Abstract:One of the major obstacles in designing an automatic target recognition (ATR) algorithm, is that there are often labeled images in one domain (i.e., infrared source domain) but no annotated images in the other target domains (i.e., visible, SAR, LIDAR). Therefore, automatically annotating these images is essential to build a robust classifier in the target domain based on the labeled images of the source domain. Transductive transfer learning is an effective way to adapt a network to a new target domain by utilizing a pretrained ATR network in the source domain. We propose an unpaired transductive transfer learning framework where a CycleGAN model and a well-trained ATR classifier in the source domain are used to construct an ATR classifier in the target domain without having any labeled data in the target domain. We employ a CycleGAN model to transfer the mid-wave infrared (MWIR) images to visible (VIS) domain images (or visible to MWIR domain). To train the transductive CycleGAN, we optimize a cost function consisting of the adversarial, identity, cycle-consistency, and categorical cross-entropy loss for both the source and target classifiers. In this paper, we perform a detailed experimental analysis on the challenging DSIAC ATR dataset. The dataset consists of ten classes of vehicles at different poses and distances ranging from 1-5 kilometers on both the MWIR and VIS domains. In our experiment, we assume that the images in the VIS domain are the unlabeled target dataset. We first detect and crop the vehicles from the raw images and then project them into a common distance of 2 kilometers. Our proposed transductive CycleGAN achieves 71.56% accuracy in classifying the visible domain vehicles in the DSIAC ATR dataset.
Abstract:Motivated by the increasing application of low-resolution LiDAR recently, we target the problem of low-resolution LiDAR-camera calibration in this work. The main challenges are two-fold: sparsity and noise in point clouds. To address the problem, we propose to apply depth interpolation to increase the point density and supervised contrastive learning to learn noise-resistant features. The experiments on RELLIS-3D demonstrate that our approach achieves an average mean absolute rotation/translation errors of 0.15cm/0.33\textdegree on 32-channel LiDAR point cloud data, which significantly outperforms all reference methods.
Abstract:The construction of a multilayer perceptron (MLP) as a piecewise low-order polynomial approximator using a signal processing approach is presented in this work. The constructed MLP contains one input, one intermediate and one output layers. Its construction includes the specification of neuron numbers and all filter weights. Through the construction, a one-to-one correspondence between the approximation of an MLP and that of a piecewise low-order polynomial is established. Comparison between piecewise polynomial and MLP approximations is made. Since the approximation capability of piecewise low-order polynomials is well understood, our findings shed light on the universal approximation capability of an MLP.
Abstract:A closed-form solution exists in two-class linear discriminant analysis (LDA), which discriminates two Gaussian-distributed classes in a multi-dimensional feature space. In this work, we interpret the multilayer perceptron (MLP) as a generalization of a two-class LDA system so that it can handle an input composed by multiple Gaussian modalities belonging to multiple classes. Besides input layer $l_{in}$ and output layer $l_{out}$, the MLP of interest consists of two intermediate layers, $l_1$ and $l_2$. We propose a feedforward design that has three stages: 1) from $l_{in}$ to $l_1$: half-space partitionings accomplished by multiple parallel LDAs, 2) from $l_1$ to $l_2$: subspace isolation where one Gaussian modality is represented by one neuron, 3) from $l_2$ to $l_{out}$: class-wise subspace mergence, where each Gaussian modality is connected to its target class. Through this process, we present an automatic MLP design that can specify the network architecture (i.e., the layer number and the neuron number at a layer) and all filter weights in a feedforward one-pass fashion. This design can be generalized to an arbitrary distribution by leveraging the Gaussian mixture model (GMM). Experiments are conducted to compare the performance of the traditional backpropagation-based MLP (BP-MLP) and the new feedforward MLP (FF-MLP).
Abstract:The successive subspace learning (SSL) principle was developed and used to design an interpretable learning model, known as the PixelHop method,for image classification in our prior work. Here, we propose an improved PixelHop method and call it PixelHop++. First, to make the PixelHop model size smaller, we decouple a joint spatial-spectral input tensor to multiple spatial tensors (one for each spectral component) under the spatial-spectral separability assumption and perform the Saab transform in a channel-wise manner, called the channel-wise (c/w) Saab transform.Second, by performing this operation from one hop to another successively, we construct a channel-decomposed feature tree whose leaf nodes contain features of one dimension (1D). Third, these 1D features are ranked according to their cross-entropy values, which allows us to select a subset of discriminant features for image classification. In PixelHop++, one can control the learning model size of fine-granularity,offering a flexible tradeoff between the model size and the classification performance. We demonstrate the flexibility of PixelHop++ on MNIST, Fashion MNIST, and CIFAR-10 three datasets.