Abstract:Image-text models excel at image-level tasks but struggle with detailed visual understanding. While these models provide strong visual-language alignment, segmentation models like SAM2 offer precise spatial boundaries for objects. To this end, we propose TextRegion, a simple, effective, and training-free framework that combines the strengths of image-text models and SAM2 to generate powerful text-aligned region tokens. These tokens enable detailed visual understanding while preserving open-vocabulary capabilities. They can be directly applied to various downstream tasks, including open-world semantic segmentation, referring expression comprehension, and grounding. We conduct extensive evaluations and consistently achieve superior or competitive performance compared to state-of-the-art training-free methods. Additionally, our framework is compatible with many image-text models, making it highly practical and easily extensible as stronger models emerge. Code is available at: https://github.com/avaxiao/TextRegion.
Abstract:Sensor fusion is crucial for an accurate and robust perception system on autonomous vehicles. Most existing datasets and perception solutions focus on fusing cameras and LiDAR. However, the collaboration between camera and radar is significantly under-exploited. The incorporation of rich semantic information from the camera, and reliable 3D information from the radar can potentially achieve an efficient, cheap, and portable solution for 3D object perception tasks. It can also be robust to different lighting or all-weather driving scenarios due to the capability of mmWave radars. In this paper, we introduce the CRUW3D dataset, including 66K synchronized and well-calibrated camera, radar, and LiDAR frames in various driving scenarios. Unlike other large-scale autonomous driving datasets, our radar data is in the format of radio frequency (RF) tensors that contain not only 3D location information but also spatio-temporal semantic information. This kind of radar format can enable machine learning models to generate more reliable object perception results after interacting and fusing the information or features between the camera and radar.
Abstract:In this paper, we present frame reconstruction model: FrameRS. It consists self-supervised video frame reconstructor and key frame selector. The frame reconstructor, FrameMAE, is developed by adapting the principles of the Masked Autoencoder for Images (MAE) for video context. The key frame selector, Frame Selector, is built on CNN architecture. By taking the high-level semantic information from the encoder of FrameMAE as its input, it can predicted the key frames with low computation costs. Integrated with our bespoke Frame Selector, FrameMAE can effectively compress a video clip by retaining approximately 30% of its pivotal frames. Performance-wise, our model showcases computational efficiency and competitive accuracy, marking a notable improvement over traditional Key Frame Extract algorithms. The implementation is available on Github