Graph Neural Networks (GNNs) has been extensively employed in the field of recommender systems, offering users personalized recommendations and yielding remarkable outcomes. Recently, GNNs incorporating contrastive learning have demonstrated promising performance in handling sparse data problem of recommendation system. However, existing contrastive learning methods still have limitations in addressing the cold-start problem and resisting noise interference especially for multi-behavior recommendation. To mitigate the aforementioned issues, the present research posits a GNNs based multi-behavior recommendation model MB-SVD that utilizes Singular Value Decomposition (SVD) graphs to enhance model performance. In particular, MB-SVD considers user preferences under different behaviors, improving recommendation effectiveness while better addressing the cold-start problem. Our model introduces an innovative methodology, which subsume multi-behavior contrastive learning paradigm to proficiently discern the intricate interconnections among heterogeneous manifestations of user behavior and generates SVD graphs to automate the distillation of crucial multi-behavior self-supervised information for robust graph augmentation. Furthermore, the SVD based framework reduces the embedding dimensions and computational load. Thorough experimentation showcases the remarkable performance of our proposed MB-SVD approach in multi-behavior recommendation endeavors across diverse real-world datasets.
Urban region embedding is an important and yet highly challenging issue due to the complexity and constantly changing nature of urban data. To address the challenges, we propose a Region-Wise Multi-View Representation Learning (ROMER) to capture multi-view dependencies and learn expressive representations of urban regions without the constraints of rigid neighbourhood region conditions. Our model focus on learn urban region representation from multi-source urban data. First, we capture the multi-view correlations from mobility flow patterns, POI semantics and check-in dynamics. Then, we adopt global graph attention networks to learn similarity of any two vertices in graphs. To comprehensively consider and share features of multiple views, a two-stage fusion module is further proposed to learn weights with external attention to fuse multi-view embeddings. Extensive experiments for two downstream tasks on real-world datasets demonstrate that our model outperforms state-of-the-art methods by up to 17\% improvement.
Graph augmentations are essential for graph contrastive learning. Most existing works use pre-defined random augmentations, which are usually unable to adapt to different input graphs and fail to consider the impact of different nodes and edges on graph semantics. To address this issue, we propose a framework called Hybrid Augmented Automated Graph Contrastive Learning (HAGCL). HAGCL consists of a feature-level learnable view generator and an edge-level learnable view generator. The view generators are end-to-end differentiable to learn the probability distribution of views conditioned on the input graph. It insures to learn the most semantically meaningful structure in terms of features and topology, respectively. Furthermore, we propose an improved joint training strategy, which can achieve better results than previous works without resorting to any weak label information in the downstream tasks and extensive evaluation of additional work.