Abstract:Recently, compressive text summarisation offers a balance between the conciseness issue of extractive summarisation and the factual hallucination issue of abstractive summarisation. However, most existing compressive summarisation methods are supervised, relying on the expensive effort of creating a new training dataset with corresponding compressive summaries. In this paper, we propose an efficient and interpretable compressive summarisation method that utilises unsupervised dual-agent reinforcement learning to optimise a summary's semantic coverage and fluency by simulating human judgment on summarisation quality. Our model consists of an extractor agent and a compressor agent, and both agents have a multi-head attentional pointer-based structure. The extractor agent first chooses salient sentences from a document, and then the compressor agent compresses these extracted sentences by selecting salient words to form a summary without using reference summaries to compute the summary reward. To our best knowledge, this is the first work on unsupervised compressive summarisation. Experimental results on three widely used datasets (e.g., Newsroom, CNN/DM, and XSum) show that our model achieves promising performance and a significant improvement on Newsroom in terms of the ROUGE metric, as well as interpretability of semantic coverage of summarisation results.
Abstract:Multimodal summarisation with multimodal output is drawing increasing attention due to the rapid growth of multimedia data. While several methods have been proposed to summarise visual-text contents, their multimodal outputs are not succinct enough at an extreme level to address the information overload issue. To the end of extreme multimodal summarisation, we introduce a new task, eXtreme Multimodal Summarisation with Multimodal Output (XMSMO) for the scenario of TL;DW - Too Long; Didn't Watch, akin to TL;DR. XMSMO aims to summarise a video-document pair into a summary with an extremely short length, which consists of one cover frame as the visual summary and one sentence as the textual summary. We propose a novel unsupervised Hierarchical Optimal Transport Network (HOT-Net) consisting of three components: hierarchical multimodal encoders, hierarchical multimodal fusion decoders, and optimal transport solvers. Our method is trained, without using reference summaries, by optimising the visual and textual coverage from the perspectives of the distance between the semantic distributions under optimal transport plans. To facilitate the study on this task, we collect a large-scale dataset XMSMO-News by harvesting 4,891 video-document pairs. The experimental results show that our method achieves promising performance in terms of ROUGE and IoU metrics.
Abstract:Extractive text summarisation aims to select salient sentences from a document to form a short yet informative summary. While learning-based methods have achieved promising results, they have several limitations, such as dependence on expensive training and lack of interpretability. Therefore, in this paper, we propose a novel non-learning-based method by for the first time formulating text summarisation as an Optimal Transport (OT) problem, namely Optimal Transport Extractive Summariser (OTExtSum). Optimal sentence extraction is conceptualised as obtaining an optimal summary that minimises the transportation cost to a given document regarding their semantic distributions. Such a cost is defined by the Wasserstein distance and used to measure the summary's semantic coverage of the original document. Comprehensive experiments on four challenging and widely used datasets - MultiNews, PubMed, BillSum, and CNN/DM demonstrate that our proposed method outperforms the state-of-the-art non-learning-based methods and several recent learning-based methods in terms of the ROUGE metric.