Abstract:After pre-training, large language models are aligned with human preferences based on pairwise comparisons. State-of-the-art alignment methods (such as PPO-based RLHF and DPO) are built on the assumption of aligning with a single preference model, despite being deployed in settings where users have diverse preferences. As a result, it is not even clear that these alignment methods produce models that satisfy users on average -- a minimal requirement for pluralistic alignment. Drawing on social choice theory and modeling users' comparisons through individual Bradley-Terry (BT) models, we introduce an alignment method's distortion: the worst-case ratio between the optimal achievable average utility, and the average utility of the learned policy. The notion of distortion helps draw sharp distinctions between alignment methods: Nash Learning from Human Feedback achieves the minimax optimal distortion of $(\frac{1}{2} + o(1)) \cdot \beta$ (for the BT temperature $\beta$), robustly across utility distributions, distributions of comparison pairs, and permissible KL divergences from the reference policy. RLHF and DPO, by contrast, suffer $\geq (1 - o(1)) \cdot \beta$ distortion already without a KL constraint, and $e^{\Omega(\beta)}$ or even unbounded distortion in the full setting, depending on how comparison pairs are sampled.
Abstract:Traditionally, social choice theory has only been applicable to choices among a few predetermined alternatives but not to more complex decisions such as collectively selecting a textual statement. We introduce generative social choice, a framework that combines the mathematical rigor of social choice theory with large language models' capability to generate text and extrapolate preferences. This framework divides the design of AI-augmented democratic processes into two components: first, proving that the process satisfies rigorous representation guarantees when given access to oracle queries; second, empirically validating that these queries can be approximately implemented using a large language model. We illustrate this framework by applying it to the problem of generating a slate of statements that is representative of opinions expressed as free-form text, for instance in an online deliberative process.