Abstract:Collaborative robots must continually adapt to novel tasks and user preferences without overburdening the user. While prior interactive robot learning methods aim to reduce human effort, they are typically limited to single-task scenarios and are not well-suited for sustained, multi-task collaboration. We propose COIL (Cost-Optimal Interactive Learning) -- a multi-task interaction planner that minimizes human effort across a sequence of tasks by strategically selecting among three query types (skill, preference, and help). When user preferences are known, we formulate COIL as an uncapacitated facility location (UFL) problem, which enables bounded-suboptimal planning in polynomial time using off-the-shelf approximation algorithms. We extend our formulation to handle uncertainty in user preferences by incorporating one-step belief space planning, which uses these approximation algorithms as subroutines to maintain polynomial-time performance. Simulated and physical experiments on manipulation tasks show that our framework significantly reduces the amount of work allocated to the human while maintaining successful task completion.
Abstract:This volume includes a selection of papers presented at the Workshop on Advancing Artificial Intelligence through Theory of Mind held at AAAI 2025 in Philadelphia US on 3rd March 2025. The purpose of this volume is to provide an open access and curated anthology for the ToM and AI research community.
Abstract:Confusing or otherwise unhelpful learner feedback creates or perpetuates erroneous beliefs that the teacher and learner have of each other, thereby increasing the cognitive burden placed upon the human teacher. For example, the robot's feedback might cause the human to misunderstand what the learner knows about the learning objective or how the learner learns. At the same time -- and in addition to the learning objective -- the learner might misunderstand how the teacher perceives the learner's task knowledge and learning processes. To ease the teaching burden, the learner should provide feedback that accounts for these misunderstandings and elicits efficient teaching from the human. This work endows an AI learner with a Second-order Theory of Mind that models perceived rationality as a source for the erroneous beliefs a teacher and learner may have of one another. It also explores how a learner can ease the teaching burden and improve teacher efficacy if it selects feedback which accounts for its model of the teacher's beliefs about the learner and its learning objective.