Abstract:LLM-based software engineering agents are increasingly used in real-world development tasks, often with access to sensitive data or security-critical codebases. Such agents could intentionally sabotage these codebases if they were misaligned. We investigate asynchronous monitoring, in which a monitoring system reviews agent actions after the fact. Unlike synchronous monitoring, this approach does not impose runtime latency, while still attempting to disrupt attacks before irreversible harm occurs. We treat monitor development as an adversarial game between a blue team (who design monitors) and a red team (who create sabotaging agents). We attempt to set the game rules such that they upper bound the sabotage potential of an agent based on Claude 4.1 Opus. To ground this game in a realistic, high-stakes deployment scenario, we develop a suite of 5 diverse software engineering environments that simulate tasks that an agent might perform within an AI developer's internal infrastructure. Over the course of the game, we develop an ensemble monitor that achieves a 6% false negative rate at 1% false positive rate on a held out test environment. Then, we estimate risk of sabotage at deployment time by extrapolating from our monitor's false negative rate. We describe one simple model for this extrapolation, present a sensitivity analysis, and describe situations in which the model would be invalid. Code is available at: https://github.com/UKGovernmentBEIS/async-control.
Abstract:Uncontrollable autonomous replication of language model agents poses a critical safety risk. To better understand this risk, we introduce RepliBench, a suite of evaluations designed to measure autonomous replication capabilities. RepliBench is derived from a decomposition of these capabilities covering four core domains: obtaining resources, exfiltrating model weights, replicating onto compute, and persisting on this compute for long periods. We create 20 novel task families consisting of 86 individual tasks. We benchmark 5 frontier models, and find they do not currently pose a credible threat of self-replication, but succeed on many components and are improving rapidly. Models can deploy instances from cloud compute providers, write self-propagating programs, and exfiltrate model weights under simple security setups, but struggle to pass KYC checks or set up robust and persistent agent deployments. Overall the best model we evaluated (Claude 3.7 Sonnet) has a >50% pass@10 score on 15/20 task families, and a >50% pass@10 score for 9/20 families on the hardest variants. These findings suggest autonomous replication capability could soon emerge with improvements in these remaining areas or with human assistance.




Abstract:The rapid proliferation of frontier model agents promises significant societal advances but also raises concerns about systemic risks arising from unsafe interactions. Collusion to the disadvantage of others has been identified as a central form of undesirable agent cooperation. The use of information hiding (steganography) in agent communications could render collusion practically undetectable. This underscores the need for evaluation frameworks to monitor and mitigate steganographic collusion capabilities. We address a crucial gap in the literature by demonstrating, for the first time, that robust steganographic collusion in LLMs can arise indirectly from optimization pressure. To investigate this problem we design two approaches -- a gradient-based reinforcement learning (GBRL) method and an in-context reinforcement learning (ICRL) method -- for reliably eliciting sophisticated LLM-generated linguistic text steganography. Importantly, we find that emergent steganographic collusion can be robust to both passive steganalytic oversight of model outputs and active mitigation through communication paraphrasing. We contribute a novel model evaluation framework and discuss limitations and future work. Our findings imply that effective risk mitigation from steganographic collusion post-deployment requires innovation in passive and active oversight techniques.




Abstract:Creating and labelling datasets of videos for use in training Human Activity Recognition models is an arduous task. In this paper, we approach this by using 3D rendering tools to generate a synthetic dataset of videos, and show that a classifier trained on these videos can generalise to real videos. We use five different augmentation techniques to generate the videos, leading to a wide variety of accurately labelled unique videos. We fine tune a pre-trained I3D model on our videos, and find that the model is able to achieve a high accuracy of 73% on the HMDB51 dataset over three classes. We also find that augmenting the HMDB training set with our dataset provides a 2% improvement in the performance of the classifier. Finally, we discuss possible extensions to the dataset, including virtual try on and modeling motion of the people.