Abstract:The classification performance of deep neural networks relies strongly on access to large, accurately annotated datasets. In medical imaging, however, obtaining such datasets is particularly challenging since annotations must be provided by specialized physicians, which severely limits the pool of annotators. Furthermore, class boundaries can often be ambiguous or difficult to define which further complicates machine learning-based classification. In this paper, we want to address this problem and introduce a framework for mislabel detection in medical datasets. This is validated on the two largest, publicly available datasets for Video Capsule Endoscopy, an important imaging procedure for examining the gastrointestinal tract based on a video stream of lowresolution images. In addition, potentially mislabeled samples identified by our pipeline were reviewed and re-annotated by three experienced gastroenterologists. Our results show that the proposed framework successfully detects incorrectly labeled data and results in an improved anomaly detection performance after cleaning the datasets compared to current baselines.
Abstract:Capsule endoscopy is a method to capture images of the gastrointestinal tract and screen for diseases which might remain hidden if investigated with standard endoscopes. Due to the limited size of a video capsule, embedding AI models directly into the capsule demands careful consideration of the model size and thus complicates anomaly detection in this field. Furthermore, the scarcity of available data in this domain poses an ongoing challenge to achieving effective anomaly detection. Thus, this work introduces an ensemble strategy to address this challenge in anomaly detection tasks in video capsule endoscopies, requiring only a small number of individual neural networks during both the training and inference phases. Ensemble learning combines the predictions of multiple independently trained neural networks. This has shown to be highly effective in enhancing both the accuracy and robustness of machine learning models. However, this comes at the cost of higher memory usage and increased computational effort, which quickly becomes prohibitive in many real-world applications. Instead of applying the same training algorithm to each individual network, we propose using various loss functions, drawn from the anomaly detection field, to train each network. The methods are validated on the two largest publicly available datasets for video capsule endoscopy images, the Galar and the Kvasir-Capsule dataset. We achieve an AUC score of 76.86% on the Kvasir-Capsule and an AUC score of 76.98% on the Galar dataset. Our approach outperforms current baselines with significantly fewer parameters across all models, which is a crucial step towards incorporating artificial intelligence into capsule endoscopies.