Abstract:Potentially idiomatic expressions (PIEs) construe meanings inherently tied to the everyday experience of a given language community. As such, they constitute an interesting challenge for assessing the linguistic (and to some extent cultural) capabilities of NLP systems. In this paper, we present XMPIE, a parallel multilingual and multimodal dataset of potentially idiomatic expressions. The dataset, containing 34 languages and over ten thousand items, allows comparative analyses of idiomatic patterns among language-specific realisations and preferences in order to gather insights about shared cultural aspects. This parallel dataset allows to evaluate model performance for a given PIE in different languages and whether idiomatic understanding in one language can be transferred to another. Moreover, the dataset supports the study of PIEs across textual and visual modalities, to measure to what extent PIE understanding in one modality transfers or implies in understanding in another modality (text vs. image). The data was created by language experts, with both textual and visual components crafted under multilingual guidelines, and each PIE is accompanied by five images representing a spectrum from idiomatic to literal meanings, including semantically related and random distractors. The result is a high-quality benchmark for evaluating multilingual and multimodal idiomatic language understanding.
Abstract:The concept of diversity has received increased consideration in Natural Language Processing (NLP) in recent years. This is due to various motivations like promoting and inclusion, approximating human linguistic behavior, and increasing systems' performance. Diversity has however often been addressed in an ad hoc manner in NLP, and with few explicit links to other domains where this notion is better theorized. We survey articles in the ACL Anthology from the past 6 years, with "diversity" or "diverse" in their title. We find a wide range of settings in which diversity is quantified, often highly specialized and using inconsistent terminology. We put forward a unified taxonomy of why, what on, where, and how diversity is measured in NLP. Diversity measures are cast upon a unified framework from ecology and economy (Stirling, 2007) with 3 dimensions of diversity: variety, balance and disparity. We discuss the trends which emerge due to this systematized approach. We believe that this study paves the way towards a better formalization of diversity in NLP, which should bring a better understanding of this notion and a better comparability between various approaches.