Some animals exhibit multi-modal locomotion capability to traverse a wide range of terrains and environments, such as amphibians that can swim and walk or birds that can fly and walk. This capability is extremely beneficial for expanding the animal's habitat range and they can choose the most energy efficient mode of locomotion in a given environment. The robotic biomimicry of this multi-modal locomotion capability can be very challenging but offer the same advantages. However, the expanded range of locomotion also increases the complexity of performing localization and path planning. In this work, we present our morphing multi-modal robot, which is capable of ground and aerial locomotion, and the implementation of readily available SLAM and path planning solutions to navigate a complex indoor environment.
We apply Fourier neural operators (FNOs), a state-of-the-art operator learning technique, to forecast the temporal evolution of experimentally measured velocity fields. FNOs are a recently developed machine learning method capable of approximating solution operators to systems of partial differential equations through data alone. The learned FNO solution operator can be evaluated in milliseconds, potentially enabling faster-than-real-time modeling for predictive flow control in physical systems. Here we use FNOs to predict how physical fluid flows evolve in time, training with particle image velocimetry measurements depicting cylinder wakes in the subcritical vortex shedding regime. We train separate FNOs at Reynolds numbers ranging from Re = 240 to Re = 3060 and study how increasingly turbulent flow phenomena impact prediction accuracy. We focus here on a short prediction horizon of ten non-dimensionalized time-steps, as would be relevant for problems of predictive flow control. We find that FNOs are capable of accurately predicting the evolution of experimental velocity fields throughout the range of Reynolds numbers tested (L2 norm error < 0.1) despite being provided with limited and imperfect flow observations. Given these results, we conclude that this method holds significant potential for real-time predictive flow control of physical systems.
The feasibility of performing airborne and ground manipulation, perception, and reconnaissance using wheeled rovers, unmanned aerial vehicles, CubeSats, SmallSats and more have been evaluated before. Among all of these solutions, balloon-based systems possess merits that make them extremely attractive, e.g., a simple operation mechanism and endured operation time. However, there are many hurdles to overcome to achieve robust loitering performance in balloon-based applications. We attempt to identify design and control challenges, and propose a novel robotic platform that allows for the application of balloons in the reconnaissance and perception of Mars craters. This work briefly covers our suggested actuation and Model Predictive Control design framework for steering such balloon systems. We propose the coordinated servoing of multiple unmanned ground vehicles (UGVs) to regulate tension forces in a cable-driven balloon to which an underactuated hanging payload is attached.
There have been several successful implementations of bio-inspired legged robots that can trot, walk, and hop robustly even in the presence of significant unplanned disturbances. Despite all of these accomplishments, practical control and high-level decision-making algorithms in multi-modal legged systems are overlooked. In nature, animals such as birds impressively showcase multiple modes of mobility including legged and aerial locomotion. They are capable of performing robust locomotion over large walls, tight spaces, and can recover from unpredictable situations such as sudden gusts or slippery surfaces. Inspired by these animals' versatility and ability to combine legged and aerial mobility to negotiate their environment, our main goal is to design and control legged robots that integrate two completely different forms of locomotion, ground and aerial mobility, in a single platform. Our robot, the Husky Carbon, is being developed to integrate aerial and legged locomotion and to transform between legged and aerial mobility. This work utilizes a Reference Governor (RG) based on low-level control of Husky's dynamical model to maintain the efficiency of legged locomotion, uses Probabilistic Road Maps (PRM) and 3D A* algorithms to generate an optimal path based on the energetic cost of transport for legged and aerial mobility
Mid-Air Helicopter Delivery (MAHD) is a new Entry, Descent and Landing (EDL) architecture to enable in situ mobility for Mars science at lower cost than previous missions. It uses a jetpack to slow down a Mars Science Helicopter (MSH) after separation from the backshell, and reach aerodynamic conditions suitable for helicopter take-off in mid air. For given aeroshell dimensions, only MAHD's lander-free approach leaves enough room in the aeroshell to accommodate the largest rotor option for MSH. This drastically improves flight performance, notably allowing +150\% increased science payload mass. Compared to heritage EDL approaches, the simpler MAHD architecture is also likely to reduce cost, and enables access to more hazardous and higher-elevation terrains on Mars. This paper introduces a design for the MAHD system architecture and operations. We present a mechanical configuration that fits both MSH and the jetpack within the 2.65-m Mars heritage aeroshell, and a jetpack control architecture which fully leverages the available helicopter avionics. We discuss preliminary numerical models of the flow dynamics resulting from the interaction between the jets, the rotors and the side winds. We define a force-torque sensing architecture capable of handling the wind and trimming the rotors to prepare for safe take-off. Finally, we analyze the dynamic environment and closed-loop control simulation results to demonstrate the preliminary feasibility of MAHD.
Mid-Air Deployment (MAD) of a rotorcraft during Entry, Descent and Landing (EDL) on Mars eliminates the need to carry a propulsion or airbag landing system. This reduces the total mass inside the aeroshell by more than 100 kg and simplifies the aeroshell architecture. MAD's lighter and simpler design is likely to bring the risk and cost associated with the mission down. Moreover, the lighter entry mass enables landing in the Martian highlands, at elevations inaccessible to current EDL technologies. This paper proposes a novel MAD concept for a Mars helicopter. We suggest a minimum science payload package to perform relevant science in the highlands. A variant of the Ingenuity helicopter is proposed to provide increased deceleration during MAD, and enough lift to fly the science payload in the highlands. We show in simulation that the lighter aeroshell results in a lower terminal velocity (30 m/s) at the end of the parachute phase of the EDL, and at higher altitudes than other approaches. After discussing the aerodynamics, controls, guidance, and mechanical challenges associated with deploying at such speed, we propose a backshell architecture that addresses them to release the helicopter in the safest conditions. Finally, we implemented the helicopter model and aerodynamic descent perturbations in the JPL Dynamics and Real-Time Simulation (DARTS)framework. Preliminary performance evaluation indicates landing and helicopter operation scan be achieved up to 5 km MOLA (Mars Orbiter Laser Altimeter reference).