Abstract:Neural audio codecs are at the core of modern conversational speech technologies, converting continuous speech into sequences of discrete tokens that can be processed by LLMs. However, existing codecs typically operate at fixed frame rates, allocating tokens uniformly in time and producing unnecessarily long sequences. In this work, we introduce DyCAST, a Dynamic Character-Aligned Speech Tokenizer that enables variable-frame-rate tokenization through soft character-level alignment and explicit duration modeling. DyCAST learns to associate tokens with character-level linguistic units during training and supports alignment-free inference with direct control over token durations at decoding time. To improve speech resynthesis quality at low frame rates, we further introduce a retrieval-augmented decoding mechanism that enhances reconstruction fidelity without increasing bitrate. Experiments show that DyCAST achieves competitive speech resynthesis quality and downstream performance while using significantly fewer tokens than fixed-frame-rate codecs.
Abstract:Interpretability is essential for user trust in real-world anomaly detection applications. However, deep learning models, despite their strong performance, often lack transparency. In this work, we study the interpretability of autoencoder-based models for audio anomaly detection, by comparing a standard autoencoder (AE) with a mask autoencoder (MAE) in terms of detection performance and interpretability. We applied several attribution methods, including error maps, saliency maps, SmoothGrad, Integrated Gradients, GradSHAP, and Grad-CAM. Although MAE shows a slightly lower detection, it consistently provides more faithful and temporally precise explanations, suggesting a better alignment with true anomalies. To assess the relevance of the regions highlighted by the explanation method, we propose a perturbation-based faithfulness metric that replaces them with their reconstructions to simulate normal input. Our findings, based on experiments in a real industrial scenario, highlight the importance of incorporating interpretability into anomaly detection pipelines and show that masked training improves explanation quality without compromising performance.
Abstract:The speech of people with Parkinson's Disease (PD) has been shown to hold important clues about the presence and progression of the disease. We investigate the factors based on which humans experts make judgments of the presence of disease in speech samples over five different speech tasks: phonations, sentence repetition, reading, recall, and picture description. We make comparisons by conducting listening tests to determine clinicians accuracy at recognizing signs of PD from audio alone, and we conduct experiments with a machine learning system for detection based on Whisper. Across tasks, Whisper performs on par or better than human experts when only audio is available, especially on challenging but important subgroups of the data: younger patients, mild cases, and female patients. Whisper's ability to recognize acoustic cues in difficult cases complements the multimodal and contextual strengths of human experts.
Abstract:Faithfulness measures whether chain-of-thought (CoT) representations accurately reflect a model's decision process and can be used as reliable explanations. Prior work has shown that CoTs from text-based LLMs are often unfaithful. This question has not been explored for large audio-language models (LALMs), where faithfulness is critical for safety-sensitive applications. Reasoning in LALMs is also more challenging, as models must first extract relevant clues from audio before reasoning over them. In this paper, we investigate the faithfulness of CoTs produced by several LALMs by applying targeted interventions, including paraphrasing, filler token injection, early answering, and introducing mistakes, on two challenging reasoning datasets: SAKURA and MMAR. After going through the aforementioned interventions across several datasets and tasks, our experiments suggest that, LALMs generally produce CoTs that appear to be faithful to their underlying decision processes.
Abstract:Neural audio codecs are a fundamental component of modern generative audio pipelines. Although recent codecs achieve strong low-bitrate reconstruction and provide powerful representations for downstream tasks, most are non-streamable, limiting their use in real-time applications. We present FocalCodec-Stream, a hybrid codec based on focal modulation that compresses speech into a single binary codebook at 0.55 - 0.80 kbps with a theoretical latency of 80 ms. Our approach combines multi-stage causal distillation of WavLM with targeted architectural improvements, including a lightweight refiner module that enhances quality under latency constraints. Experiments show that FocalCodec-Stream outperforms existing streamable codecs at comparable bitrates, while preserving both semantic and acoustic information. The result is a favorable trade-off between reconstruction quality, downstream task performance, latency, and efficiency. Code and checkpoints will be released at https://github.com/lucadellalib/focalcodec.
Abstract:Traditional recommendation systems represent user preferences in dense representations obtained through black-box encoder models. While these models often provide strong recommendation performance, they lack interpretability for users, leaving users unable to understand or control the system's modeling of their preferences. This limitation is especially challenging in music recommendation, where user preferences are highly personal and often evolve based on nuanced qualities like mood, genre, tempo, or instrumentation. In this paper, we propose an audio prototypical network for controllable music recommendation. This network expresses user preferences in terms of prototypes representative of semantically meaningful features pertaining to musical qualities. We show that the model obtains competitive recommendation performance compared to popular baseline models while also providing interpretable and controllable user profiles.
Abstract:Discrete audio tokens are compact representations that aim to preserve perceptual quality, phonetic content, and speaker characteristics while enabling efficient storage and inference, as well as competitive performance across diverse downstream tasks.They provide a practical alternative to continuous features, enabling the integration of speech and audio into modern large language models (LLMs). As interest in token-based audio processing grows, various tokenization methods have emerged, and several surveys have reviewed the latest progress in the field. However, existing studies often focus on specific domains or tasks and lack a unified comparison across various benchmarks. This paper presents a systematic review and benchmark of discrete audio tokenizers, covering three domains: speech, music, and general audio. We propose a taxonomy of tokenization approaches based on encoder-decoder, quantization techniques, training paradigm, streamability, and application domains. We evaluate tokenizers on multiple benchmarks for reconstruction, downstream performance, and acoustic language modeling, and analyze trade-offs through controlled ablation studies. Our findings highlight key limitations, practical considerations, and open challenges, providing insight and guidance for future research in this rapidly evolving area. For more information, including our main results and tokenizer database, please refer to our website: https://poonehmousavi.github.io/dates-website/.
Abstract:Large Language Models (LLMs) are widely used in Spoken Language Understanding (SLU). Recent SLU models process audio directly by adapting speech input into LLMs for better multimodal learning. A key consideration for these models is the cross-modal alignment between text and audio modalities, which is a telltale sign as to whether or not LLM is able to associate semantic meaning to audio segments. While various methods exist for fusing these modalities, there is no standard metric to evaluate alignment quality in LLMs. In this work, we propose a new metric, ALAS (Automatic Latent Alignment Score). Our study examines the correlation between audio and text representations across transformer layers, for two different tasks (Spoken Question Answering and Emotion Recognition). We showcase that our metric behaves as expected across different layers and different tasks.
Abstract:Foundation models based on large language models (LLMs) have shown great success in handling various tasks and modalities. However, adapting these models for general-purpose audio-language tasks is challenging due to differences in acoustic environments and task variations. In this work, we introduce LiSTEN Learning Soft Token Embeddings for Neural Audio LLMs), a framework for adapting LLMs to speech and audio tasks. LiSTEN uses a dynamic prompt selection strategy with learnable key-value pairs, allowing the model to balance general and task-specific knowledge while avoiding overfitting in a multitask setting. Our approach reduces dependence on large-scale ASR or captioning datasets, achieves competitive performance with fewer trainable parameters, and simplifies training by using a single-stage process. Additionally, LiSTEN enhances interpretability by analyzing the diversity and overlap of selected prompts across different tasks.
Abstract:OpenAI's Whisper has achieved significant success in Automatic Speech Recognition. However, it has consistently been found to exhibit hallucination issues, particularly in non-speech segments, which limits its broader application in complex industrial settings. In this paper, we introduce a novel method to reduce Whisper's hallucination on non-speech segments without using any pre- or post-possessing techniques. Specifically, we benchmark the contribution of each self-attentional head in the Whisper-large-v3 decoder to the hallucination problem by performing a head-wise mask. Our findings reveal that only 3 of the 20 heads account for over 75% of the hallucinations on the UrbanSound dataset. We then fine-tune these three crazy heads using a collection of non-speech data. The results show that our best fine-tuned model, namely Calm-Whisper, achieves over 80% reduction in non-speech hallucination with only less than 0.1% WER degradation on LibriSpeech test-clean and test-other.