Abstract:Interpretability is essential for user trust in real-world anomaly detection applications. However, deep learning models, despite their strong performance, often lack transparency. In this work, we study the interpretability of autoencoder-based models for audio anomaly detection, by comparing a standard autoencoder (AE) with a mask autoencoder (MAE) in terms of detection performance and interpretability. We applied several attribution methods, including error maps, saliency maps, SmoothGrad, Integrated Gradients, GradSHAP, and Grad-CAM. Although MAE shows a slightly lower detection, it consistently provides more faithful and temporally precise explanations, suggesting a better alignment with true anomalies. To assess the relevance of the regions highlighted by the explanation method, we propose a perturbation-based faithfulness metric that replaces them with their reconstructions to simulate normal input. Our findings, based on experiments in a real industrial scenario, highlight the importance of incorporating interpretability into anomaly detection pipelines and show that masked training improves explanation quality without compromising performance.
Abstract:In multilingual colloquial settings, it is a habitual occurrence to compose expressions of text or speech containing tokens or phrases of different languages, a phenomenon popularly known as code-switching or code-mixing (CMX). We present our approach and results for the Code-mixed Machine Translation (MixMT) shared task at WMT 2022: the task consists of two subtasks, monolingual to code-mixed machine translation (Subtask-1) and code-mixed to monolingual machine translation (Subtask-2). Most non-synthetic code-mixed data are from social media but gathering a significant amount of this kind of data would be laborious and this form of data has more writing variation than other domains, so for both subtasks, we experimented with data schedules for out-of-domain data. We jointly learn multiple domains of text by pretraining and fine-tuning, combined with a sentence alignment objective. We found that switching between domains caused improved performance in the domains seen earliest during training, but depleted the performance on the remaining domains. A continuous training run with strategically dispensed data of different domains showed a significantly improved performance over fine-tuning.