Tony
Abstract:Observability into the decision making of modern AI systems may be required to safely deploy increasingly capable agents. Monitoring the chain-of-thought (CoT) of today's reasoning models has proven effective for detecting misbehavior. However, this "monitorability" may be fragile under different training procedures, data sources, or even continued system scaling. To measure and track monitorability, we propose three evaluation archetypes (intervention, process, and outcome-property) and a new monitorability metric, and introduce a broad evaluation suite. We demonstrate that these evaluations can catch simple model organisms trained to have obfuscated CoTs, and that CoT monitoring is more effective than action-only monitoring in practical settings. We compare the monitorability of various frontier models and find that most models are fairly, but not perfectly, monitorable. We also evaluate how monitorability scales with inference-time compute, reinforcement learning optimization, and pre-training model size. We find that longer CoTs are generally more monitorable and that RL optimization does not materially decrease monitorability even at the current frontier scale. Notably, we find that for a model at a low reasoning effort, we could instead deploy a smaller model at a higher reasoning effort (thereby matching capabilities) and obtain a higher monitorability, albeit at a higher overall inference compute cost. We further investigate agent-monitor scaling trends and find that scaling a weak monitor's test-time compute when monitoring a strong agent increases monitorability. Giving the weak monitor access to CoT not only improves monitorability, but it steepens the monitor's test-time compute to monitorability scaling trend. Finally, we show we can improve monitorability by asking models follow-up questions and giving their follow-up CoT to the monitor.




Abstract:Understanding how language models generalize behaviors from their training to a broader deployment distribution is an important problem in AI safety. Betley et al. discovered that fine-tuning GPT-4o on intentionally insecure code causes "emergent misalignment," where models give stereotypically malicious responses to unrelated prompts. We extend this work, demonstrating emergent misalignment across diverse conditions, including reinforcement learning on reasoning models, fine-tuning on various synthetic datasets, and in models without safety training. To investigate the mechanisms behind this generalized misalignment, we apply a "model diffing" approach using sparse autoencoders to compare internal model representations before and after fine-tuning. This approach reveals several "misaligned persona" features in activation space, including a toxic persona feature which most strongly controls emergent misalignment and can be used to predict whether a model will exhibit such behavior. Additionally, we investigate mitigation strategies, discovering that fine-tuning an emergently misaligned model on just a few hundred benign samples efficiently restores alignment.




Abstract:The o1 model series is trained with large-scale reinforcement learning to reason using chain of thought. These advanced reasoning capabilities provide new avenues for improving the safety and robustness of our models. In particular, our models can reason about our safety policies in context when responding to potentially unsafe prompts, through deliberative alignment. This leads to state-of-the-art performance on certain benchmarks for risks such as generating illicit advice, choosing stereotyped responses, and succumbing to known jailbreaks. Training models to incorporate a chain of thought before answering has the potential to unlock substantial benefits, while also increasing potential risks that stem from heightened intelligence. Our results underscore the need for building robust alignment methods, extensively stress-testing their efficacy, and maintaining meticulous risk management protocols. This report outlines the safety work carried out for the OpenAI o1 and OpenAI o1-mini models, including safety evaluations, external red teaming, and Preparedness Framework evaluations.
Abstract:GPT-4o is an autoregressive omni model that accepts as input any combination of text, audio, image, and video, and generates any combination of text, audio, and image outputs. It's trained end-to-end across text, vision, and audio, meaning all inputs and outputs are processed by the same neural network. GPT-4o can respond to audio inputs in as little as 232 milliseconds, with an average of 320 milliseconds, which is similar to human response time in conversation. It matches GPT-4 Turbo performance on text in English and code, with significant improvement on text in non-English languages, while also being much faster and 50\% cheaper in the API. GPT-4o is especially better at vision and audio understanding compared to existing models. In line with our commitment to building AI safely and consistent with our voluntary commitments to the White House, we are sharing the GPT-4o System Card, which includes our Preparedness Framework evaluations. In this System Card, we provide a detailed look at GPT-4o's capabilities, limitations, and safety evaluations across multiple categories, focusing on speech-to-speech while also evaluating text and image capabilities, and measures we've implemented to ensure the model is safe and aligned. We also include third-party assessments on dangerous capabilities, as well as discussion of potential societal impacts of GPT-4o's text and vision capabilities.
Abstract:LLMs often face competing pressures (for example helpfulness vs. harmlessness). To understand how models resolve such conflicts, we study Llama-2-chat models on the forbidden fact task. Specifically, we instruct Llama-2 to truthfully complete a factual recall statement while forbidding it from saying the correct answer. This often makes the model give incorrect answers. We decompose Llama-2 into 1000+ components, and rank each one with respect to how useful it is for forbidding the correct answer. We find that in aggregate, around 35 components are enough to reliably implement the full suppression behavior. However, these components are fairly heterogeneous and many operate using faulty heuristics. We discover that one of these heuristics can be exploited via a manually designed adversarial attack which we call The California Attack. Our results highlight some roadblocks standing in the way of being able to successfully interpret advanced ML systems. Project website available at https://forbiddenfacts.github.io .