Abstract:A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps.
Abstract:The task of clustering unlabeled time series and sequences entails a particular set of challenges, namely to adequately model temporal relations and variable sequence lengths. If these challenges are not properly handled, the resulting clusters might be of suboptimal quality. As a key solution, we present a joint clustering and feature learning framework for time series based on deep learning. For a given set of time series, we train a recurrent network to represent, or embed, each time series in a vector space such that a divergence-based clustering loss function can discover the underlying cluster structure in an end-to-end manner. Unlike previous approaches, our model inherently handles multivariate time series of variable lengths and does not require specification of a distance-measure in the input space. On a diverse set of benchmark datasets we illustrate that our proposed Recurrent Deep Divergence-based Clustering approach outperforms, or performs comparable to, previous approaches.
Abstract:Convolutional neural networks have led to significant breakthroughs in the domain of medical image analysis. However, the task of breast cancer segmentation in whole-slide images (WSIs) is still underexplored. WSIs are large histopathological images with extremely high resolution. Constrained by the hardware and field of view, using high-magnification patches can slow down the inference process and using low-magnification patches can cause the loss of information. In this paper, we aim to achieve two seemingly conflicting goals for breast cancer segmentation: accurate and fast prediction. We propose a simple yet efficient framework Reinforced Auto-Zoom Net (RAZN) to tackle this task. Motivated by the zoom-in operation of a pathologist using a digital microscope, RAZN learns a policy network to decide whether zooming is required in a given region of interest. Because the zoom-in action is selective, RAZN is robust to unbalanced and noisy ground truth labels and can efficiently reduce overfitting. We evaluate our method on a public breast cancer dataset. RAZN outperforms both single-scale and multi-scale baseline approaches, achieving better accuracy at low inference cost.
Abstract:Autoencoders learn data representations (codes) in such a way that the input is reproduced at the output of the network. However, it is not always clear what kind of properties of the input data need to be captured by the codes. Kernel machines have experienced great success by operating via inner-products in a theoretically well-defined reproducing kernel Hilbert space, hence capturing topological properties of input data. In this paper, we enhance the autoencoder's ability to learn effective data representations by aligning inner products between codes with respect to a kernel matrix. By doing so, the proposed kernelized autoencoder allows learning similarity-preserving embeddings of input data, where the notion of similarity is explicitly controlled by the user and encoded in a positive semi-definite kernel matrix. Experiments are performed for evaluating both reconstruction and kernel alignment performance in classification tasks and visualization of high-dimensional data. Additionally, we show that our method is capable to emulate kernel principal component analysis on a denoising task, obtaining competitive results at a much lower computational cost.
Abstract:Video summarization plays an important role in video understanding by selecting key frames/shots. Traditionally, it aims to find the most representative and diverse contents in a video as short summaries. Recently, a more generalized task, query-conditioned video summarization, has been introduced, which takes user queries into consideration to learn more user-oriented summaries. In this paper, we propose a query-conditioned three-player generative adversarial network to tackle this challenge. The generator learns the joint representation of the user query and the video content, and the discriminator takes three pairs of query-conditioned summaries as the input to discriminate the real summary from a generated and a random one. A three-player loss is introduced for joint training of the generator and the discriminator, which forces the generator to learn better summary results, and avoids the generation of random trivial summaries. Experiments on a recently proposed query-conditioned video summarization benchmark dataset show the efficiency and efficacy of our proposed method.
Abstract:Convolutional Neural Networks (CNNs) are propelling advances in a range of different computer vision tasks such as object detection and object segmentation. Their success has motivated research in applications of such models for medical image analysis. If CNN-based models are to be helpful in a medical context, they need to be precise, interpretable, and uncertainty in predictions must be well understood. In this paper, we develop and evaluate recent advances in uncertainty estimation and model interpretability in the context of semantic segmentation of polyps from colonoscopy images. We evaluate and enhance several architectures of Fully Convolutional Networks (FCNs) for semantic segmentation of colorectal polyps and provide a comparison between these models. Our highest performing model achieves a 76.06\% mean IOU accuracy on the EndoScene dataset, a considerable improvement over the previous state-of-the-art.
Abstract:Raven's Progressive Matrices are one of the widely used tests in evaluating the human test taker's fluid intelligence. Analogously, this paper introduces geometric generalization based zero-shot learning tests to measure the rapid learning ability and the internal consistency of deep generative models. Our empirical research analysis on state-of-the-art generative models discern their ability to generalize concepts across classes. In the process, we introduce Infinite World, an evaluable, scalable, multi-modal, light-weight dataset and Zero-Shot Intelligence Metric ZSI. The proposed tests condenses human-level spatial and numerical reasoning tasks to its simplistic geometric forms. The dataset is scalable to a theoretical limit of infinity, in numerical features of the generated geometric figures, image size and in quantity. We systematically analyze state-of-the-art model's internal consistency, identify their bottlenecks and propose a pro-active optimization method for few-shot and zero-shot learning.
Abstract:The cardiothoracic ratio (CTR), a clinical metric of heart size in chest X-rays (CXRs), is a key indicator of cardiomegaly. Manual measurement of CTR is time-consuming and can be affected by human subjectivity, making it desirable to design computer-aided systems that assist clinicians in the diagnosis process. Automatic CTR estimation through chest organ segmentation, however, requires large amounts of pixel-level annotated data, which is often unavailable. To alleviate this problem, we propose an unsupervised domain adaptation framework based on adversarial networks. The framework learns domain invariant feature representations from openly available data sources to produce accurate chest organ segmentation for unlabeled datasets. Specifically, we propose a model that enforces our intuition that prediction masks should be domain independent. Hence, we introduce a discriminator that distinguishes segmentation predictions from ground truth masks. We evaluate our system's prediction based on the assessment of radiologists and demonstrate the clinical practicability for the diagnosis of cardiomegaly. We finally illustrate on the JSRT dataset that the semi-supervised performance of our model is also very promising.
Abstract:Identifying customer segments in retail banking portfolios with different risk profiles can improve the accuracy of credit scoring. The Variational Autoencoder (VAE) has shown promising results in different research domains, and it has been documented the powerful information embedded in the latent space of the VAE. We use the VAE and show that transforming the input data into a meaningful representation, it is possible to steer configurations in the latent space of the VAE. Specifically, the Weight of Evidence (WoE) transformation encapsulates the propensity to fall into financial distress and the latent space in the VAE preserves this characteristic in a well-defined clustering structure. These clusters have considerably different risk profiles and therefore are suitable not only for credit scoring but also for marketing and customer purposes. This new clustering methodology offers solutions to some of the challenges in the existing clustering algorithms, e.g., suggests the number of clusters, assigns cluster labels to new customers, enables cluster visualization, scales to large datasets, captures non-linear relationships among others. Finally, for portfolios with a large number of customers in each cluster, developing one classifier model per cluster can improve the credit scoring assessment.
Abstract:The potential of graph convolutional neural networks for the task of zero-shot learning has been demonstrated recently. These models are highly sample efficient as related concepts in the graph structure share statistical strength allowing generalization to new classes when faced with a lack of data. However, knowledge from distant nodes can get diluted when propagating through intermediate nodes, because current approaches to zero-shot learning use graph propagation schemes that perform Laplacian smoothing at each layer. We show that extensive smoothing does not help the task of regressing classifier weights in zero-shot learning. In order to still incorporate information from distant nodes and utilize the graph structure, we propose an Attentive Dense Graph Propagation Module (ADGPM). ADGPM allows us to exploit the hierarchical graph structure of the knowledge graph through additional connections. These connections are added based on a node's relationship to its ancestors and descendants and an attention scheme is further used to weigh their contribution depending on the distance to the node. Finally, we illustrate that finetuning of the feature representation after training the ADGPM leads to considerable improvements. Our method achieves competitive results, outperforming previous zero-shot learning approaches.