Abstract:Advanced by rich perception and precise execution, robots possess immense potential to provide professional and customized rehabilitation exercises for patients with mobility impairments caused by strokes. Autonomous robotic rehabilitation significantly reduces human workloads in the long and tedious rehabilitation process. However, training a rehabilitation robot is challenging due to the data scarcity issue. This challenge arises from privacy concerns (e.g., the risk of leaking private disease and identity information of patients) during clinical data access and usage. Data from various patients and hospitals cannot be shared for adequate robot training, further compromising rehabilitation safety and limiting implementation scopes. To address this challenge, this work developed a novel federated joint learning (FJL) method to jointly train robots across hospitals. FJL also adopted a long short-term memory network (LSTM)-Transformer learning mechanism to effectively explore the complex tempo-spatial relations among patient mobility conditions and robotic rehabilitation motions. To validate FJL's effectiveness in training a robot network, a clinic-simulation combined experiment was designed. Real rehabilitation exercise data from 200 patients with stroke diseases (upper limb hemiplegia, Parkinson's syndrome, and back pain syndrome) were adopted. Inversely driven by clinical data, 300,000 robotic rehabilitation guidances were simulated. FJL proved to be effective in joint rehabilitation learning, performing 20% - 30% better than baseline methods.
Abstract:As technological advancements continue to expand the capabilities of multi unmanned-aerial-vehicle systems (mUAV), human operators face challenges in scalability and efficiency due to the complex cognitive load and operations associated with motion adjustments and team coordination. Such cognitive demands limit the feasible size of mUAV teams and necessitate extensive operator training, impeding broader adoption. This paper developed a Hand Gesture Based Interactive Control (HGIC), a novel interface system that utilize computer vision techniques to intuitively translate hand gestures into modular commands for robot teaming. Through learning control models, these commands enable efficient and scalable mUAV motion control and adjustments. HGIC eliminates the need for specialized hardware and offers two key benefits: 1) Minimal training requirements through natural gestures; and 2) Enhanced scalability and efficiency via adaptable commands. By reducing the cognitive burden on operators, HGIC opens the door for more effective large-scale mUAV applications in complex, dynamic, and uncertain scenarios. HGIC will be open-sourced after the paper being published online for the research community, aiming to drive forward innovations in human-mUAV interactions.
Abstract:Robots assist humans in various activities, from daily living public service (e.g., airports and restaurants), and to collaborative manufacturing. However, it is risky to assume that the knowledge and strategies robots learned from one group of people can apply to other groups. The discriminatory performance of robots will undermine their service quality for some people, ignore their service requests, and even offend them. Therefore, it is critically important to mitigate bias in robot decision-making for more fair services. In this paper, we designed a self-reflective mechanism -- Fairness-Sensitive Policy Gradient Reinforcement Learning (FSPGRL), to help robots to self-identify biased behaviors during interactions with humans. FSPGRL identifies bias by examining the abnormal update along particular gradients and updates the policy network to support fair decision-making for robots. To validate FSPGRL's effectiveness, a human-centered service scenario, "A robot is serving people in a restaurant," was designed. A user study was conducted; 24 human subjects participated in generating 1,000 service demonstrations. Four commonly-seen issues "Willingness Issue," "Priority Issue," "Quality Issue," "Risk Issue" were observed from robot behaviors. By using FSPGRL to improve robot decisions, robots were proven to have a self-bias detection capability for a more fair service. We have achieved the suppression of bias and improved the quality during the process of robot learning to realize a relatively fair model.