Abstract:The widespread diffusion of medical and political claims in the wake of COVID-19 has led to a voluminous rise in misinformation and fake news. The current vogue is to employ manual fact-checkers to efficiently classify and verify such data to combat this avalanche of claim-ridden misinformation. However, the rate of information dissemination is such that it vastly outpaces the fact-checkers' strength. Therefore, to aid manual fact-checkers in eliminating the superfluous content, it becomes imperative to automatically identify and extract the snippets of claim-worthy (mis)information present in a post. In this work, we introduce the novel task of Claim Span Identification (CSI). We propose CURT, a large-scale Twitter corpus with token-level claim spans on more than 7.5k tweets. Furthermore, along with the standard token classification baselines, we benchmark our dataset with DABERTa, an adapter-based variation of RoBERTa. The experimental results attest that DABERTa outperforms the baseline systems across several evaluation metrics, improving by about 1.5 points. We also report detailed error analysis to validate the model's performance along with the ablation studies. Lastly, we release our comprehensive span annotation guidelines for public use.
Abstract:Curbing online hate speech has become the need of the hour; however, a blanket ban on such activities is infeasible for several geopolitical and cultural reasons. To reduce the severity of the problem, in this paper, we introduce a novel task, hate speech normalization, that aims to weaken the intensity of hatred exhibited by an online post. The intention of hate speech normalization is not to support hate but instead to provide the users with a stepping stone towards non-hate while giving online platforms more time to monitor any improvement in the user's behavior. To this end, we manually curated a parallel corpus - hate texts and their normalized counterparts (a normalized text is less hateful and more benign). We introduce NACL, a simple yet efficient hate speech normalization model that operates in three stages - first, it measures the hate intensity of the original sample; second, it identifies the hate span(s) within it; and finally, it reduces hate intensity by paraphrasing the hate spans. We perform extensive experiments to measure the efficacy of NACL via three-way evaluation (intrinsic, extrinsic, and human-study). We observe that NACL outperforms six baselines - NACL yields a score of 0.1365 RMSE for the intensity prediction, 0.622 F1-score in the span identification, and 82.27 BLEU and 80.05 perplexity for the normalized text generation. We further show the generalizability of NACL across other platforms (Reddit, Facebook, Gab). An interactive prototype of NACL was put together for the user study. Further, the tool is being deployed in a real-world setting at Wipro AI as a part of its mission to tackle harmful content on online platforms.
Abstract:Being a popular mode of text-based communication in multilingual communities, code-mixing in online social media has became an important subject to study. Learning the semantics and morphology of code-mixed language remains a key challenge, due to scarcity of data and unavailability of robust and language-invariant representation learning technique. Any morphologically-rich language can benefit from character, subword, and word-level embeddings, aiding in learning meaningful correlations. In this paper, we explore a hierarchical transformer-based architecture (HIT) to learn the semantics of code-mixed languages. HIT consists of multi-headed self-attention and outer product attention components to simultaneously comprehend the semantic and syntactic structures of code-mixed texts. We evaluate the proposed method across 6 Indian languages (Bengali, Gujarati, Hindi, Tamil, Telugu and Malayalam) and Spanish for 9 NLP tasks on 17 datasets. The HIT model outperforms state-of-the-art code-mixed representation learning and multilingual language models in all tasks. We further demonstrate the generalizability of the HIT architecture using masked language modeling-based pre-training, zero-shot learning, and transfer learning approaches. Our empirical results show that the pre-training objectives significantly improve the performance on downstream tasks.
Abstract:Indirect speech such as sarcasm achieves a constellation of discourse goals in human communication. While the indirectness of figurative language warrants speakers to achieve certain pragmatic goals, it is challenging for AI agents to comprehend such idiosyncrasies of human communication. Though sarcasm identification has been a well-explored topic in dialogue analysis, for conversational systems to truly grasp a conversation's innate meaning and generate appropriate responses, simply detecting sarcasm is not enough; it is vital to explain its underlying sarcastic connotation to capture its true essence. In this work, we study the discourse structure of sarcastic conversations and propose a novel task - Sarcasm Explanation in Dialogue (SED). Set in a multimodal and code-mixed setting, the task aims to generate natural language explanations of satirical conversations. To this end, we curate WITS, a new dataset to support our task. We propose MAF (Modality Aware Fusion), a multimodal context-aware attention and global information fusion module to capture multimodality and use it to benchmark WITS. The proposed attention module surpasses the traditional multimodal fusion baselines and reports the best performance on almost all metrics. Lastly, we carry out detailed analyses both quantitatively and qualitatively.
Abstract:Sarcasm is a pervading linguistic phenomenon and highly challenging to explain due to its subjectivity, lack of context and deeply-felt opinion. In the multimodal setup, sarcasm is conveyed through the incongruity between the text and visual entities. Although recent approaches deal with sarcasm as a classification problem, it is unclear why an online post is identified as sarcastic. Without proper explanation, end users may not be able to perceive the underlying sense of irony. In this paper, we propose a novel problem -- Multimodal Sarcasm Explanation (MuSE) -- given a multimodal sarcastic post containing an image and a caption, we aim to generate a natural language explanation to reveal the intended sarcasm. To this end, we develop MORE, a new dataset with explanation of 3510 sarcastic multimodal posts. Each explanation is a natural language (English) sentence describing the hidden irony. We benchmark MORE by employing a multimodal Transformer-based architecture. It incorporates a cross-modal attention in the Transformer's encoder which attends to the distinguishing features between the two modalities. Subsequently, a BART-based auto-regressive decoder is used as the generator. Empirical results demonstrate convincing results over various baselines (adopted for MuSE) across five evaluation metrics. We also conduct human evaluation on predictions and obtain Fleiss' Kappa score of 0.4 as a fair agreement among 25 evaluators.
Abstract:The onset of the COVID-19 pandemic has brought the mental health of people under risk. Social counselling has gained remarkable significance in this environment. Unlike general goal-oriented dialogues, a conversation between a patient and a therapist is considerably implicit, though the objective of the conversation is quite apparent. In such a case, understanding the intent of the patient is imperative in providing effective counselling in therapy sessions, and the same applies to a dialogue system as well. In this work, we take forward a small but an important step in the development of an automated dialogue system for mental-health counselling. We develop a novel dataset, named HOPE, to provide a platform for the dialogue-act classification in counselling conversations. We identify the requirement of such conversation and propose twelve domain-specific dialogue-act (DAC) labels. We collect 12.9K utterances from publicly-available counselling session videos on YouTube, extract their transcripts, clean, and annotate them with DAC labels. Further, we propose SPARTA, a transformer-based architecture with a novel speaker- and time-aware contextual learning for the dialogue-act classification. Our evaluation shows convincing performance over several baselines, achieving state-of-the-art on HOPE. We also supplement our experiments with extensive empirical and qualitative analyses of SPARTA.
Abstract:Internet memes have become powerful means to transmit political, psychological, and socio-cultural ideas. Although memes are typically humorous, recent days have witnessed an escalation of harmful memes used for trolling, cyberbullying, and abuse. Detecting such memes is challenging as they can be highly satirical and cryptic. Moreover, while previous work has focused on specific aspects of memes such as hate speech and propaganda, there has been little work on harm in general. Here, we aim to bridge this gap. We focus on two tasks: (i)detecting harmful memes, and (ii)identifying the social entities they target. We further extend a recently released HarMeme dataset, which covered COVID-19, with additional memes and a new topic: US politics. To solve these tasks, we propose MOMENTA (MultimOdal framework for detecting harmful MemEs aNd Their tArgets), a novel multimodal deep neural network that uses global and local perspectives to detect harmful memes. MOMENTA systematically analyzes the local and the global perspective of the input meme (in both modalities) and relates it to the background context. MOMENTA is interpretable and generalizable, and our experiments show that it outperforms several strong rivaling approaches.
Abstract:The formulation of a claim rests at the core of argument mining. To demarcate between a claim and a non-claim is arduous for both humans and machines, owing to latent linguistic variance between the two and the inadequacy of extensive definition-based formalization. Furthermore, the increase in the usage of online social media has resulted in an explosion of unsolicited information on the web presented as informal text. To account for the aforementioned, in this paper, we proposed DESYR. It is a framework that intends on annulling the said issues for informal web-based text by leveraging a combination of hierarchical representation learning (dependency-inspired Poincare embedding), definition-based alignment, and feature projection. We do away with fine-tuning computer-heavy language models in favor of fabricating a more domain-centric but lighter approach. Experimental results indicate that DESYR builds upon the state-of-the-art system across four benchmark claim datasets, most of which were constructed with informal texts. We see an increase of 3 claim-F1 points on the LESA-Twitter dataset, an increase of 1 claim-F1 point and 9 macro-F1 points on the Online Comments(OC) dataset, an increase of 24 claim-F1 points and 17 macro-F1 points on the Web Discourse(WD) dataset, and an increase of 8 claim-F1 points and 5 macro-F1 points on the Micro Texts(MT) dataset. We also perform an extensive analysis of the results. We make a 100-D pre-trained version of our Poincare-variant along with the source code.
Abstract:Sarcasm detection and humor classification are inherently subtle problems, primarily due to their dependence on the contextual and non-verbal information. Furthermore, existing studies in these two topics are usually constrained in non-English languages such as Hindi, due to the unavailability of qualitative annotated datasets. In this work, we make two major contributions considering the above limitations: (1) we develop a Hindi-English code-mixed dataset, MaSaC, for the multi-modal sarcasm detection and humor classification in conversational dialog, which to our knowledge is the first dataset of its kind; (2) we propose MSH-COMICS, a novel attention-rich neural architecture for the utterance classification. We learn efficient utterance representation utilizing a hierarchical attention mechanism that attends to a small portion of the input sentence at a time. Further, we incorporate dialog-level contextual attention mechanism to leverage the dialog history for the multi-modal classification. We perform extensive experiments for both the tasks by varying multi-modal inputs and various submodules of MSH-COMICS. We also conduct comparative analysis against existing approaches. We observe that MSH-COMICS attains superior performance over the existing models by > 1 F1-score point for the sarcasm detection and 10 F1-score points in humor classification. We diagnose our model and perform thorough analysis of the results to understand the superiority and pitfalls.
Abstract:Understanding linguistics and morphology of resource-scarce code-mixed texts remains a key challenge in text processing. Although word embedding comes in handy to support downstream tasks for low-resource languages, there are plenty of scopes in improving the quality of language representation particularly for code-mixed languages. In this paper, we propose HIT, a robust representation learning method for code-mixed texts. HIT is a hierarchical transformer-based framework that captures the semantic relationship among words and hierarchically learns the sentence-level semantics using a fused attention mechanism. HIT incorporates two attention modules, a multi-headed self-attention and an outer product attention module, and computes their weighted sum to obtain the attention weights. Our evaluation of HIT on one European (Spanish) and five Indic (Hindi, Bengali, Tamil, Telugu, and Malayalam) languages across four NLP tasks on eleven datasets suggests significant performance improvement against various state-of-the-art systems. We further show the adaptability of learned representation across tasks in a transfer learning setup (with and without fine-tuning).