Abstract:We introduce a layout similarity measure designed to evaluate the results of layout generation. While several similarity measures have been proposed in prior research, there has been a lack of comprehensive discussion about their behaviors. Our research uncovers that the majority of these measures are unable to handle various layout differences, primarily due to their dependencies on strict element matching, that is one-by-one matching of elements within the same category. To overcome this limitation, we propose a new similarity measure based on optimal transport, which facilitates a more flexible matching of elements. This approach allows us to quantify the similarity between any two layouts even those sharing no element categories, making our measure highly applicable to a wide range of layout generation tasks. For tasks such as unconditional layout generation, where FID is commonly used, we also extend our measure to deal with collection-level similarities between groups of layouts. The empirical result suggests that our collection-level measure offers more reliable comparisons than existing ones like FID and Max.IoU.
Abstract:We investigate the impact of deep generative models on potential social biases in upcoming computer vision models. As the internet witnesses an increasing influx of AI-generated images, concerns arise regarding inherent biases that may accompany them, potentially leading to the dissemination of harmful content. This paper explores whether a detrimental feedback loop, resulting in bias amplification, would occur if generated images were used as the training data for future models. We conduct simulations by progressively substituting original images in COCO and CC3M datasets with images generated through Stable Diffusion. The modified datasets are used to train OpenCLIP and image captioning models, which we evaluate in terms of quality and bias. Contrary to expectations, our findings indicate that introducing generated images during training does not uniformly amplify bias. Instead, instances of bias mitigation across specific tasks are observed. We further explore the factors that may influence these phenomena, such as artifacts in image generation (e.g., blurry faces) or pre-existing biases in the original datasets.
Abstract:Finding a suitable layout represents a crucial task for diverse applications in graphic design. Motivated by simpler and smoother sampling trajectories, we explore the use of Flow Matching as an alternative to current diffusion-based layout generation models. Specifically, we propose LayoutFlow, an efficient flow-based model capable of generating high-quality layouts. Instead of progressively denoising the elements of a noisy layout, our method learns to gradually move, or flow, the elements of an initial sample until it reaches its final prediction. In addition, we employ a conditioning scheme that allows us to handle various generation tasks with varying degrees of conditioning with a single model. Empirically, LayoutFlow performs on par with state-of-the-art models while being significantly faster.
Abstract:Color selection plays a critical role in graphic document design and requires sufficient consideration of various contexts. However, recommending appropriate colors which harmonize with the other colors and textual contexts in documents is a challenging task, even for experienced designers. In this study, we propose a multimodal masked color model that integrates both color and textual contexts to provide text-aware color recommendation for graphic documents. Our proposed model comprises self-attention networks to capture the relationships between colors in multiple palettes, and cross-attention networks that incorporate both color and CLIP-based text representations. Our proposed method primarily focuses on color palette completion, which recommends colors based on the given colors and text. Additionally, it is applicable for another color recommendation task, full palette generation, which generates a complete color palette corresponding to the given text. Experimental results demonstrate that our proposed approach surpasses previous color palette completion methods on accuracy, color distribution, and user experience, as well as full palette generation methods concerning color diversity and similarity to the ground truth palettes.
Abstract:Human evaluation is critical for validating the performance of text-to-image generative models, as this highly cognitive process requires deep comprehension of text and images. However, our survey of 37 recent papers reveals that many works rely solely on automatic measures (e.g., FID) or perform poorly described human evaluations that are not reliable or repeatable. This paper proposes a standardized and well-defined human evaluation protocol to facilitate verifiable and reproducible human evaluation in future works. In our pilot data collection, we experimentally show that the current automatic measures are incompatible with human perception in evaluating the performance of the text-to-image generation results. Furthermore, we provide insights for designing human evaluation experiments reliably and conclusively. Finally, we make several resources publicly available to the community to facilitate easy and fast implementations.
Abstract:Creative workflows for generating graphical documents involve complex inter-related tasks, such as aligning elements, choosing appropriate fonts, or employing aesthetically harmonious colors. In this work, we attempt at building a holistic model that can jointly solve many different design tasks. Our model, which we denote by FlexDM, treats vector graphic documents as a set of multi-modal elements, and learns to predict masked fields such as element type, position, styling attributes, image, or text, using a unified architecture. Through the use of explicit multi-task learning and in-domain pre-training, our model can better capture the multi-modal relationships among the different document fields. Experimental results corroborate that our single FlexDM is able to successfully solve a multitude of different design tasks, while achieving performance that is competitive with task-specific and costly baselines.
Abstract:Controllable layout generation aims at synthesizing plausible arrangement of element bounding boxes with optional constraints, such as type or position of a specific element. In this work, we try to solve a broad range of layout generation tasks in a single model that is based on discrete state-space diffusion models. Our model, named LayoutDM, naturally handles the structured layout data in the discrete representation and learns to progressively infer a noiseless layout from the initial input, where we model the layout corruption process by modality-wise discrete diffusion. For conditional generation, we propose to inject layout constraints in the form of masking or logit adjustment during inference. We show in the experiments that our LayoutDM successfully generates high-quality layouts and outperforms both task-specific and task-agnostic baselines on several layout tasks.
Abstract:Color is a critical design factor for web pages, affecting important factors such as viewer emotions and the overall trust and satisfaction of a website. Effective coloring requires design knowledge and expertise, but if this process could be automated through data-driven modeling, efficient exploration and alternative workflows would be possible. However, this direction remains underexplored due to the lack of a formalization of the web page colorization problem, datasets, and evaluation protocols. In this work, we propose a new dataset consisting of e-commerce mobile web pages in a tractable format, which are created by simplifying the pages and extracting canonical color styles with a common web browser. The web page colorization problem is then formalized as a task of estimating plausible color styles for a given web page content with a given hierarchical structure of the elements. We present several Transformer-based methods that are adapted to this task by prepending structural message passing to capture hierarchical relationships between elements. Experimental results, including a quantitative evaluation designed for this task, demonstrate the advantages of our methods over statistical and image colorization methods. The code is available at https://github.com/CyberAgentAILab/webcolor.
Abstract:Video summarization aims to select the most informative subset of frames in a video to facilitate efficient video browsing. Unsupervised methods usually rely on heuristic training objectives such as diversity and representativeness. However, such methods need to bootstrap the online-generated summaries to compute the objectives for importance score regression. We consider such a pipeline inefficient and seek to directly quantify the frame-level importance with the help of contrastive losses in the representation learning literature. Leveraging the contrastive losses, we propose three metrics featuring a desirable key frame: local dissimilarity, global consistency, and uniqueness. With features pre-trained on the image classification task, the metrics can already yield high-quality importance scores, demonstrating competitive or better performance than past heavily-trained methods. We show that by refining the pre-trained features with a lightweight contrastively learned projection module, the frame-level importance scores can be further improved, and the model can also leverage a large number of random videos and generalize to test videos with decent performance. Code available at https://github.com/pangzss/pytorch-CTVSUM.
Abstract:Vector graphic documents present multiple visual elements, such as images, shapes, and texts. Choosing appropriate colors for multiple visual elements is a difficult but crucial task for both amateurs and professional designers. Instead of creating a single color palette for all elements, we extract multiple color palettes from each visual element in a graphic document, and then combine them into a color sequence. We propose a masked color model for color sequence completion and recommend the specified colors based on color context in multi-palette with high probability. We train the model and build a color recommendation system on a large-scale dataset of vector graphic documents. The proposed color recommendation method outperformed other state-of-the-art methods by both quantitative and qualitative evaluations on color prediction and our color recommendation system received positive feedback from professional designers in an interview study.