Abstract:Large language models (LLMs) have seen rapid adoption for tasks such as drafting emails, summarizing meetings, and answering health questions. In such uses, users may need to share private information (e.g., health records, contact details). To evaluate LLMs' ability to identify and redact such private information, prior work developed benchmarks (e.g., ConfAIde, PrivacyLens) with real-life scenarios. Using these benchmarks, researchers have found that LLMs sometimes fail to keep secrets private when responding to complex tasks (e.g., leaking employee salaries in meeting summaries). However, these evaluations rely on LLMs (proxy LLMs) to gauge compliance with privacy norms, overlooking real users' perceptions. Moreover, prior work primarily focused on the privacy-preservation quality of responses, without investigating nuanced differences in helpfulness. To understand how users perceive the privacy-preservation quality and helpfulness of LLM responses to privacy-sensitive scenarios, we conducted a user study with 94 participants using 90 scenarios from PrivacyLens. We found that, when evaluating identical responses to the same scenario, users showed low agreement with each other on the privacy-preservation quality and helpfulness of the LLM response. Further, we found high agreement among five proxy LLMs, while each individual LLM had low correlation with users' evaluations. These results indicate that the privacy and helpfulness of LLM responses are often specific to individuals, and proxy LLMs are poor estimates of how real users would perceive these responses in privacy-sensitive scenarios. Our results suggest the need to conduct user-centered studies on measuring LLMs' ability to help users while preserving privacy. Additionally, future research could investigate ways to improve the alignment between proxy LLMs and users for better estimation of users' perceived privacy and utility.
Abstract:Large language models (LLMs) are prone to hallucinations and sensitive to prompt perturbations, often resulting in inconsistent or unreliable generated text. Different methods have been proposed to mitigate such hallucinations and fragility -- one of them being measuring the consistency (the model's confidence in the response, or likelihood of generating a similar response when resampled) of LLM responses. In previous work, measuring consistency often relied on the probability of a response appearing within a pool of resampled responses, or internal states or logits of responses. However, it is not yet clear how well these approaches approximate how humans perceive the consistency of LLM responses. We performed a user study (n=2,976) and found current methods typically do not approximate users' perceptions of LLM consistency very well. We propose a logit-based ensemble method for estimating LLM consistency, and we show that this method matches the performance of the best-performing existing metric in estimating human ratings of LLM consistency. Our results suggest that methods of estimating LLM consistency without human evaluation are sufficiently imperfect that we suggest evaluation with human input be more broadly used.
Abstract:LLMs have shown preliminary promise in some security tasks and CTF challenges. However, it is unclear whether LLMs are able to realize multistage network attacks, which involve executing a wide variety of actions across multiple hosts such as conducting reconnaissance, exploiting vulnerabilities to gain initial access, leveraging internal hosts to move laterally, and using multiple compromised hosts to exfiltrate data. We evaluate LLMs across 10 multistage networks and find that popular LLMs are unable to realize these attacks. To enable LLMs to realize these attacks, we introduce Incalmo, an LLM-agnostic high-level attack abstraction layer that sits between an LLM and the environment. Rather than LLMs issuing low-level command-line instructions, which can lead to incorrect implementations, Incalmo allows LLMs to specify high-level tasks (e.g., infect a host, scan a network), which are then carried out by Incalmo. Incalmo realizes these tasks by translating them into low-level primitives (e.g., commands to exploit tools). Incalmo also provides an environment state service and an attack graph service to provide structure to LLMs in selecting actions relevant to a multistage attack. Across 9 out of 10 realistic emulated networks (from 25 to 50 hosts), LLMs using Incalmo can successfully autonomously execute multistage attacks. We also conduct an ablation analysis to show the key role the high-level abstractions play. For instance, we find that both Incalmo's high-level tasks and services are crucial. Furthermore, even smaller-parameter LLMs with Incalmo can fully succeed in 5 of 10 environments, while larger-parameter LLMs without Incalmo do not fully succeed in any.




Abstract:Large language model (LLM) users might rely on others (e.g., prompting services), to write prompts. However, the risks of trusting prompts written by others remain unstudied. In this paper, we assess the risk of using such prompts on brand recommendation tasks when shopping. First, we found that paraphrasing prompts can result in LLMs mentioning given brands with drastically different probabilities, including a pair of prompts where the probability changes by 100%. Next, we developed an approach that can be used to perturb an original base prompt to increase the likelihood that an LLM mentions a given brand. We designed a human-inconspicuous algorithm that perturbs prompts, which empirically forces LLMs to mention strings related to a brand more often, by absolute improvements up to 78.3%. Our results suggest that our perturbed prompts, 1) are inconspicuous to humans, 2) force LLMs to recommend a target brand more often, and 3) increase the perceived chances of picking targeted brands.
Abstract:Machine-learning models are known to be vulnerable to evasion attacks that perturb model inputs to induce misclassifications. In this work, we identify real-world scenarios where the true threat cannot be assessed accurately by existing attacks. Specifically, we find that conventional metrics measuring targeted and untargeted robustness do not appropriately reflect a model's ability to withstand attacks from one set of source classes to another set of target classes. To address the shortcomings of existing methods, we formally define a new metric, termed group-based robustness, that complements existing metrics and is better-suited for evaluating model performance in certain attack scenarios. We show empirically that group-based robustness allows us to distinguish between models' vulnerability against specific threat models in situations where traditional robustness metrics do not apply. Moreover, to measure group-based robustness efficiently and accurately, we 1) propose two loss functions and 2) identify three new attack strategies. We show empirically that with comparable success rates, finding evasive samples using our new loss functions saves computation by a factor as large as the number of targeted classes, and finding evasive samples using our new attack strategies saves time by up to 99\% compared to brute-force search methods. Finally, we propose a defense method that increases group-based robustness by up to 3.52$\times$.
Abstract:It is becoming increasingly imperative to design robust ML defenses. However, recent work has found that many defenses that initially resist state-of-the-art attacks can be broken by an adaptive adversary. In this work we take steps to simplify the design of defenses and argue that white-box defenses should eschew randomness when possible. We begin by illustrating a new issue with the deployment of randomized defenses that reduces their security compared to their deterministic counterparts. We then provide evidence that making defenses deterministic simplifies robustness evaluation, without reducing the effectiveness of a truly robust defense. Finally, we introduce a new defense evaluation framework that leverages a defense's deterministic nature to better evaluate its adversarial robustness.




Abstract:Certified defenses are a recent development in adversarial machine learning (ML), which aim to rigorously guarantee the robustness of ML models to adversarial perturbations. A large body of work studies certified defenses in computer vision, where $\ell_p$ norm-bounded evasion attacks are adopted as a tractable threat model. However, this threat model has known limitations in vision, and is not applicable to other domains -- e.g., where inputs may be discrete or subject to complex constraints. Motivated by this gap, we study certified defenses for malware detection, a domain where attacks against ML-based systems are a real and current threat. We consider static malware detection systems that operate on byte-level data. Our certified defense is based on the approach of randomized smoothing which we adapt by: (1) replacing the standard Gaussian randomization scheme with a novel deletion randomization scheme that operates on bytes or chunks of an executable; and (2) deriving a certificate that measures robustness to evasion attacks in terms of generalized edit distance. To assess the size of robustness certificates that are achievable while maintaining high accuracy, we conduct experiments on malware datasets using a popular convolutional malware detection model, MalConv. We are able to accurately classify 91% of the inputs while being certifiably robust to any adversarial perturbations of edit distance 128 bytes or less. By comparison, an existing certification of up to 128 bytes of substitutions (without insertions or deletions) achieves an accuracy of 78%. In addition, given that robustness certificates are conservative, we evaluate practical robustness to several recently published evasion attacks and, in some cases, find robustness beyond certified guarantees.




Abstract:Minimal adversarial perturbations added to inputs have been shown to be effective at fooling deep neural networks. In this paper, we introduce several innovations that make white-box targeted attacks follow the intuition of the attacker's goal: to trick the model to assign a higher probability to the target class than to any other, while staying within a specified distance from the original input. First, we propose a new loss function that explicitly captures the goal of targeted attacks, in particular, by using the logits of all classes instead of just a subset, as is common. We show that Auto-PGD with this loss function finds more adversarial examples than it does with other commonly used loss functions. Second, we propose a new attack method that uses a further developed version of our loss function capturing both the misclassification objective and the $L_{\infty}$ distance limit $\epsilon$. This new attack method is relatively 1.5--4.2% more successful on the CIFAR10 dataset and relatively 8.2--14.9% more successful on the ImageNet dataset, than the next best state-of-the-art attack. We confirm using statistical tests that our attack outperforms state-of-the-art attacks on different datasets and values of $\epsilon$ and against different defenses.




Abstract:Motivated by the transformative impact of deep neural networks (DNNs) on different areas (e.g., image and speech recognition), researchers and anti-virus vendors are proposing end-to-end DNNs for malware detection from raw bytes that do not require manual feature engineering. Given the security sensitivity of the task that these DNNs aim to solve, it is important to assess their susceptibility to evasion. In this work, we propose an attack that guides binary-diversification tools via optimization to mislead DNNs for malware detection while preserving the functionality of binaries. Unlike previous attacks on such DNNs, ours manipulates instructions that are a functional part of the binary, which makes it particularly challenging to defend against. We evaluated our attack against three DNNs in white-box and black-box settings, and found that it can often achieve success rates near 100%. Moreover, we found that our attack can fool some commercial anti-viruses, in certain cases with a success rate of 85%. We explored several defenses, both new and old, and identified some that can successfully prevent over 80% of our evasion attempts. However, these defenses may still be susceptible to evasion by adaptive attackers, and so we advocate for augmenting malware-detection systems with methods that do not rely on machine learning.




Abstract:This paper proposes a new defense called $n$-ML against adversarial examples, i.e., inputs crafted by perturbing benign inputs by small amounts to induce misclassifications by classifiers. Inspired by $n$-version programming, $n$-ML trains an ensemble of $n$ classifiers, and inputs are classified by a vote of the classifiers in the ensemble. Unlike prior such approaches, however, the classifiers in the ensemble are trained specifically to classify adversarial examples differently, rendering it very difficult for an adversarial example to obtain enough votes to be misclassified. We show that $n$-ML roughly retains the benign classification accuracies of state-of-the-art models on the MNIST, CIFAR10, and GTSRB datasets, while simultaneously defending against adversarial examples with better resilience than the best defenses known to date and, in most cases, with lower classification-time overhead.