Abstract:Large language models (LLMs) have seen rapid adoption for tasks such as drafting emails, summarizing meetings, and answering health questions. In such uses, users may need to share private information (e.g., health records, contact details). To evaluate LLMs' ability to identify and redact such private information, prior work developed benchmarks (e.g., ConfAIde, PrivacyLens) with real-life scenarios. Using these benchmarks, researchers have found that LLMs sometimes fail to keep secrets private when responding to complex tasks (e.g., leaking employee salaries in meeting summaries). However, these evaluations rely on LLMs (proxy LLMs) to gauge compliance with privacy norms, overlooking real users' perceptions. Moreover, prior work primarily focused on the privacy-preservation quality of responses, without investigating nuanced differences in helpfulness. To understand how users perceive the privacy-preservation quality and helpfulness of LLM responses to privacy-sensitive scenarios, we conducted a user study with 94 participants using 90 scenarios from PrivacyLens. We found that, when evaluating identical responses to the same scenario, users showed low agreement with each other on the privacy-preservation quality and helpfulness of the LLM response. Further, we found high agreement among five proxy LLMs, while each individual LLM had low correlation with users' evaluations. These results indicate that the privacy and helpfulness of LLM responses are often specific to individuals, and proxy LLMs are poor estimates of how real users would perceive these responses in privacy-sensitive scenarios. Our results suggest the need to conduct user-centered studies on measuring LLMs' ability to help users while preserving privacy. Additionally, future research could investigate ways to improve the alignment between proxy LLMs and users for better estimation of users' perceived privacy and utility.
Abstract:Large language models (LLMs) are prone to hallucinations and sensitive to prompt perturbations, often resulting in inconsistent or unreliable generated text. Different methods have been proposed to mitigate such hallucinations and fragility -- one of them being measuring the consistency (the model's confidence in the response, or likelihood of generating a similar response when resampled) of LLM responses. In previous work, measuring consistency often relied on the probability of a response appearing within a pool of resampled responses, or internal states or logits of responses. However, it is not yet clear how well these approaches approximate how humans perceive the consistency of LLM responses. We performed a user study (n=2,976) and found current methods typically do not approximate users' perceptions of LLM consistency very well. We propose a logit-based ensemble method for estimating LLM consistency, and we show that this method matches the performance of the best-performing existing metric in estimating human ratings of LLM consistency. Our results suggest that methods of estimating LLM consistency without human evaluation are sufficiently imperfect that we suggest evaluation with human input be more broadly used.