Alert button
Picture for Luciano M. Prevedello

Luciano M. Prevedello

Alert button

for the Alzheimer's Disease Neuroimaging Initiative

Prediction of Model Generalizability for Unseen Data: Methodology and Case Study in Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI

Add code
Bookmark button
Alert button
Dec 15, 2022
Engin Dikici, Xuan Nguyen, Noah Takacs, Luciano M. Prevedello

Figure 1 for Prediction of Model Generalizability for Unseen Data: Methodology and Case Study in Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI
Figure 2 for Prediction of Model Generalizability for Unseen Data: Methodology and Case Study in Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI
Figure 3 for Prediction of Model Generalizability for Unseen Data: Methodology and Case Study in Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI
Figure 4 for Prediction of Model Generalizability for Unseen Data: Methodology and Case Study in Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI
Viaarxiv icon

Advancing Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI using Noisy Student-based Training

Add code
Bookmark button
Alert button
Nov 19, 2021
Engin Dikici, Xuan V. Nguyen, Matthew Bigelow, John. L. Ryu, Luciano M. Prevedello

Figure 1 for Advancing Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI using Noisy Student-based Training
Figure 2 for Advancing Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI using Noisy Student-based Training
Figure 3 for Advancing Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI using Noisy Student-based Training
Figure 4 for Advancing Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI using Noisy Student-based Training
Viaarxiv icon

The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification

Add code
Bookmark button
Alert button
Jul 05, 2021
Ujjwal Baid, Satyam Ghodasara, Michel Bilello, Suyash Mohan, Evan Calabrese, Errol Colak, Keyvan Farahani, Jayashree Kalpathy-Cramer, Felipe C. Kitamura, Sarthak Pati, Luciano M. Prevedello, Jeffrey D. Rudie, Chiharu Sako, Russell T. Shinohara, Timothy Bergquist, Rong Chai, James Eddy, Julia Elliott, Walter Reade, Thomas Schaffter, Thomas Yu, Jiaxin Zheng, BraTS Annotators, Christos Davatzikos, John Mongan, Christopher Hess, Soonmee Cha, Javier Villanueva-Meyer, John B. Freymann, Justin S. Kirby, Benedikt Wiestler, Priscila Crivellaro, Rivka R. Colen, Aikaterini Kotrotsou, Daniel Marcus, Mikhail Milchenko, Arash Nazeri, Hassan Fathallah-Shaykh, Roland Wiest, Andras Jakab, Marc-Andre Weber, Abhishek Mahajan, Bjoern Menze, Adam E. Flanders, Spyridon Bakas

Figure 1 for The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification
Figure 2 for The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification
Figure 3 for The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification
Viaarxiv icon

Augmented Networks for Faster Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI

Add code
Bookmark button
Alert button
May 27, 2021
Engin Dikici, Xuan V. Nguyen, Matthew Bigelow, Luciano M. Prevedello

Figure 1 for Augmented Networks for Faster Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI
Figure 2 for Augmented Networks for Faster Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI
Figure 3 for Augmented Networks for Faster Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI
Figure 4 for Augmented Networks for Faster Brain Metastases Detection in T1-Weighted Contrast-Enhanced 3D MRI
Viaarxiv icon

Deep Learning-Based Automatic Detection of Poorly Positioned Mammograms to Minimize Patient Return Visits for Repeat Imaging: A Real-World Application

Add code
Bookmark button
Alert button
Sep 28, 2020
Vikash Gupta, Clayton Taylor, Sarah Bonnet, Luciano M. Prevedello, Jeffrey Hawley, Richard D White, Mona G Flores, Barbaros Selnur Erdal

Figure 1 for Deep Learning-Based Automatic Detection of Poorly Positioned Mammograms to Minimize Patient Return Visits for Repeat Imaging: A Real-World Application
Figure 2 for Deep Learning-Based Automatic Detection of Poorly Positioned Mammograms to Minimize Patient Return Visits for Repeat Imaging: A Real-World Application
Figure 3 for Deep Learning-Based Automatic Detection of Poorly Positioned Mammograms to Minimize Patient Return Visits for Repeat Imaging: A Real-World Application
Figure 4 for Deep Learning-Based Automatic Detection of Poorly Positioned Mammograms to Minimize Patient Return Visits for Repeat Imaging: A Real-World Application
Viaarxiv icon

Artificial Intelligence to Assist in Exclusion of Coronary Atherosclerosis during CCTA Evaluation of Chest-Pain in the Emergency Department: Preparing an Application for Real-World Use

Add code
Bookmark button
Alert button
Aug 10, 2020
Richard D. White, Barbaros S. Erdal, Mutlu Demirer, Vikash Gupta, Matthew T. Bigelow, Engin Dikici, Sema Candemir, Mauricio S. Galizia, Jessica L. Carpenter, Thomas P. O Donnell, Abdul H. Halabi, Luciano M. Prevedello

Figure 1 for Artificial Intelligence to Assist in Exclusion of Coronary Atherosclerosis during CCTA Evaluation of Chest-Pain in the Emergency Department: Preparing an Application for Real-World Use
Figure 2 for Artificial Intelligence to Assist in Exclusion of Coronary Atherosclerosis during CCTA Evaluation of Chest-Pain in the Emergency Department: Preparing an Application for Real-World Use
Figure 3 for Artificial Intelligence to Assist in Exclusion of Coronary Atherosclerosis during CCTA Evaluation of Chest-Pain in the Emergency Department: Preparing an Application for Real-World Use
Figure 4 for Artificial Intelligence to Assist in Exclusion of Coronary Atherosclerosis during CCTA Evaluation of Chest-Pain in the Emergency Department: Preparing an Application for Real-World Use
Viaarxiv icon

Predicting Rate of Cognitive Decline at Baseline Using a Deep Neural Network with Multidata Analysis

Add code
Bookmark button
Alert button
Feb 24, 2020
Sema Candemir, Xuan V. Nguyen, Luciano M. Prevedello, Matthew T. Bigelow, Richard D. White, Barbaros S. Erdal

Figure 1 for Predicting Rate of Cognitive Decline at Baseline Using a Deep Neural Network with Multidata Analysis
Figure 2 for Predicting Rate of Cognitive Decline at Baseline Using a Deep Neural Network with Multidata Analysis
Figure 3 for Predicting Rate of Cognitive Decline at Baseline Using a Deep Neural Network with Multidata Analysis
Figure 4 for Predicting Rate of Cognitive Decline at Baseline Using a Deep Neural Network with Multidata Analysis
Viaarxiv icon

Are Quantitative Features of Lung Nodules Reproducible at Different CT Acquisition and Reconstruction Parameters?

Add code
Bookmark button
Alert button
Aug 14, 2019
Barbaros S. Erdal, Mutlu Demirer, Chiemezie C. Amadi, Gehan F. M. Ibrahim, Thomas P. O'Donnell, Rainer Grimmer, Andreas Wimmer, Kevin J. Little, Vikash Gupta, Matthew T. Bigelow, Luciano M. Prevedello, Richard D. White

Figure 1 for Are Quantitative Features of Lung Nodules Reproducible at Different CT Acquisition and Reconstruction Parameters?
Figure 2 for Are Quantitative Features of Lung Nodules Reproducible at Different CT Acquisition and Reconstruction Parameters?
Figure 3 for Are Quantitative Features of Lung Nodules Reproducible at Different CT Acquisition and Reconstruction Parameters?
Figure 4 for Are Quantitative Features of Lung Nodules Reproducible at Different CT Acquisition and Reconstruction Parameters?
Viaarxiv icon