Abstract:Conventional single-dataset training often fails with new data distributions, especially in ultrasound (US) image analysis due to limited data, acoustic shadows, and speckle noise. Therefore, constructing a universal framework for multi-heterogeneous US datasets is imperative. However, a key challenge arises: how to effectively mitigate inter-dataset interference while preserving dataset-specific discriminative features for robust downstream task? Previous approaches utilize either a single source-specific decoder or a domain adaptation strategy, but these methods experienced a decline in performance when applied to other domains. Considering this, we propose a Universal Collaborative Mixture of Heterogeneous Source-Specific Experts (COME). Specifically, COME establishes dual structure-semantic shared experts that create a universal representation space and then collaborate with source-specific experts to extract discriminative features through providing complementary features. This design enables robust generalization by leveraging cross-datasets experience distributions and providing universal US priors for small-batch or unseen data scenarios. Extensive experiments under three evaluation modes (single-dataset, intra-organ, and inter-organ integration datasets) demonstrate COME's superiority, achieving significant mean AP improvements over state-of-the-art methods. Our project is available at: https://universalcome.github.io/UniversalCOME/.
Abstract:In recent years, deep learning methods such as convolutional neural network (CNN) and transformers have made significant progress in CT multi-organ segmentation. However, CT multi-organ segmentation methods based on masked image modeling (MIM) are very limited. There are already methods using MAE for CT multi-organ segmentation task, we believe that the existing methods do not identify the most difficult areas to reconstruct. To this end, we propose a MIM self-training framework with hard patches mining masked autoencoders for CT multi-organ segmentation tasks (selfMedHPM). The method performs ViT self-pretraining on the training set of the target data and introduces an auxiliary loss predictor, which first predicts the patch loss and determines the location of the next mask. SelfMedHPM implementation is better than various competitive methods in abdominal CT multi-organ segmentation and body CT multi-organ segmentation. We have validated the performance of our method on the Multi Atlas Labeling Beyond The Cranial Vault (BTCV) dataset for abdomen mult-organ segmentation and the SinoMed Whole Body (SMWB) dataset for body multi-organ segmentation tasks.