Abstract:The lightweight semi-supervised learning (LSL) strategy provides an effective approach of conserving labeled samples and minimizing model inference costs. Prior research has effectively applied knowledge transfer learning and co-training regularization from large to small models in LSL. However, such training strategies are computationally intensive and prone to local optima, thereby increasing the difficulty of finding the optimal solution. This has prompted us to investigate the feasibility of integrating three low-cost scenarios for text mining tasks: limited labeled supervision, lightweight fine-tuning, and rapid-inference small models. We propose NanoNet, a novel framework for lightweight text mining that implements parameter-efficient learning with limited supervision. It employs online knowledge distillation to generate multiple small models and enhances their performance through mutual learning regularization. The entire process leverages parameter-efficient learning, reducing training costs and minimizing supervision requirements, ultimately yielding a lightweight model for downstream inference.
Abstract:We introduce Kimi K2.5, an open-source multimodal agentic model designed to advance general agentic intelligence. K2.5 emphasizes the joint optimization of text and vision so that two modalities enhance each other. This includes a series of techniques such as joint text-vision pre-training, zero-vision SFT, and joint text-vision reinforcement learning. Building on this multimodal foundation, K2.5 introduces Agent Swarm, a self-directed parallel agent orchestration framework that dynamically decomposes complex tasks into heterogeneous sub-problems and executes them concurrently. Extensive evaluations show that Kimi K2.5 achieves state-of-the-art results across various domains including coding, vision, reasoning, and agentic tasks. Agent Swarm also reduces latency by up to $4.5\times$ over single-agent baselines. We release the post-trained Kimi K2.5 model checkpoint to facilitate future research and real-world applications of agentic intelligence.