Abstract:While works such as OneRec have validated the scaling laws of Large Language Models (LLMs) in recommender systems, they rely on a cumbersome separate vocabulary. This dependency prevents the model architecture from reusing native LLM vocabularies, resulting in high maintenance costs and poor scalability. In response, we aim to efficiently reuse open-source LLM architectures without constructing a separate tokenization vocabulary. Furthermore, we identify that the optimization strategy of OneRec Gradient Bounded Policy Optimization (GBPO),suffers from a "Symmetric Conservatism" problem: its static gradient boundaries structurally suppress the update momentum required for cold-start items and fail to prevent diversity collapse in high-noise environments.To address this issue, we propose SAGE (Sequence-level Adaptive Gradient Evolution), a unified optimization framework tailored for list-wise generative recommendation. SAGE introduces two key innovations:(1) Sequence-level Signal Decoupling: By combining a geometric mean importance ratio with decoupled multi-objective advantages, we eliminate token-level variance and resolve the "Reward Collapse" problem. (2) Asymmetric Adaptive Dynamics: We construct a dynamic gradient manifold that applies a "Boost Factor" to high-potential cold start items to achieve super-linear updates and employs an "Entropy Aware Penalty" to break information cocoons. Theoretical analysis and empirical results demonstrate that SAGE effectively unblocks cold-start traffic and sustains recommendation diversity, all while retaining the numerical stability of GBPO.




Abstract:Traditional recommendation systems often grapple with "filter bubbles", underutilization of external knowledge, and a disconnect between model optimization and business policy iteration. To address these limitations, this paper introduces RecLLM-R1, a novel recommendation framework leveraging Large Language Models (LLMs) and drawing inspiration from the DeepSeek R1 methodology. The framework initiates by transforming user profiles, historical interactions, and multi-faceted item attributes into LLM-interpretable natural language prompts through a carefully engineered data construction process. Subsequently, a two-stage training paradigm is employed: the initial stage involves Supervised Fine-Tuning (SFT) to imbue the LLM with fundamental recommendation capabilities. The subsequent stage utilizes Group Relative Policy Optimization (GRPO), a reinforcement learning technique, augmented with a Chain-of-Thought (CoT) mechanism. This stage guides the model through multi-step reasoning and holistic decision-making via a flexibly defined reward function, aiming to concurrently optimize recommendation accuracy, diversity, and other bespoke business objectives. Empirical evaluations on a real-world user behavior dataset from a large-scale social media platform demonstrate that RecLLM-R1 significantly surpasses existing baseline methods across a spectrum of evaluation metrics, including accuracy, diversity, and novelty. It effectively mitigates the filter bubble effect and presents a promising avenue for the integrated optimization of recommendation models and policies under intricate business goals.