Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Authors:Lexing Ying

Abstract:Differential privacy is a framework for protecting the identity of individual data points in the decision-making process. In this note, we propose a new form of differential privacy called tangent differential privacy. Compared with the usual differential privacy that is defined uniformly across data distributions, tangent differential privacy is tailored towards a specific data distribution of interest. It also allows for general distribution distances such as total variation distance and Wasserstein distance. In the case of risk minimization, we show that entropic regularization guarantees tangent differential privacy under rather general conditions on the risk function.

Via

Abstract:Diffusion models have become a leading method for generative modeling of both image and scientific data. As these models are costly to train and evaluate, reducing the inference cost for diffusion models remains a major goal. Inspired by the recent empirical success in accelerating diffusion models via the parallel sampling technique~\cite{shih2024parallel}, we propose to divide the sampling process into $\mathcal{O}(1)$ blocks with parallelizable Picard iterations within each block. Rigorous theoretical analysis reveals that our algorithm achieves $\widetilde{\mathcal{O}}(\mathrm{poly} \log d)$ overall time complexity, marking the first implementation with provable sub-linear complexity w.r.t. the data dimension $d$. Our analysis is based on a generalized version of Girsanov's theorem and is compatible with both the SDE and probability flow ODE implementations. Our results shed light on the potential of fast and efficient sampling of high-dimensional data on fast-evolving modern large-memory GPU clusters.

Via

Authors:Lexing Ying

Abstract:In online learning, the data is provided in a sequential order, and the goal of the learner is to make online decisions to minimize overall regrets. This note is concerned with continuous-time models and algorithms for several online learning problems: online linear optimization, adversarial bandit, and adversarial linear bandit. For each problem, we extend the discrete-time algorithm to the continuous-time setting and provide a concise proof of the optimal regret bound.

Via

Figures and Tables:

Abstract:Bootstrap is a popular methodology for simulating input uncertainty. However, it can be computationally expensive when the number of samples is large. We propose a new approach called \textbf{Orthogonal Bootstrap} that reduces the number of required Monte Carlo replications. We decomposes the target being simulated into two parts: the \textit{non-orthogonal part} which has a closed-form result known as Infinitesimal Jackknife and the \textit{orthogonal part} which is easier to be simulated. We theoretically and numerically show that Orthogonal Bootstrap significantly reduces the computational cost of Bootstrap while improving empirical accuracy and maintaining the same width of the constructed interval.

Via

Authors:Xun Tang, Holakou Rahmanian, Michael Shavlovsky, Kiran Koshy Thekumparampil, Tesi Xiao, Lexing Ying

Figures and Tables:

Abstract:Entropic optimal transport (OT) and the Sinkhorn algorithm have made it practical for machine learning practitioners to perform the fundamental task of calculating transport distance between statistical distributions. In this work, we focus on a general class of OT problems under a combination of equality and inequality constraints. We derive the corresponding entropy regularization formulation and introduce a Sinkhorn-type algorithm for such constrained OT problems supported by theoretical guarantees. We first bound the approximation error when solving the problem through entropic regularization, which reduces exponentially with the increase of the regularization parameter. Furthermore, we prove a sublinear first-order convergence rate of the proposed Sinkhorn-type algorithm in the dual space by characterizing the optimization procedure with a Lyapunov function. To achieve fast and higher-order convergence under weak entropy regularization, we augment the Sinkhorn-type algorithm with dynamic regularization scheduling and second-order acceleration. Overall, this work systematically combines recent theoretical and numerical advances in entropic optimal transport with the constrained case, allowing practitioners to derive approximate transport plans in complex scenarios.

Via

Authors:Lexing Ying

Abstract:This note considers the multidimensional unstructured sparse recovery problems. Examples include Fourier inversion and sparse deconvolution. The eigenmatrix is a data-driven construction with desired approximate eigenvalues and eigenvectors proposed for the one-dimensional problems. This note extends the eigenmatrix approach to multidimensional problems. Numerical results are provided to demonstrate the performance of the proposed method.

Via

Abstract:Diffusion models have achieved huge empirical success in data generation tasks. Recently, some efforts have been made to adapt the framework of diffusion models to discrete state space, providing a more natural approach for modeling intrinsically discrete data, such as language and graphs. This is achieved by formulating both the forward noising process and the corresponding reversed process as Continuous Time Markov Chains (CTMCs). In this paper, we investigate the theoretical properties of the discrete diffusion model. Specifically, we introduce an algorithm leveraging the uniformization of continuous Markov chains, implementing transitions on random time points. Under reasonable assumptions on the learning of the discrete score function, we derive Total Variation distance and KL divergence guarantees for sampling from any distribution on a hypercube. Our results align with state-of-the-art achievements for diffusion models in $\mathbb{R}^d$ and further underscore the advantages of discrete diffusion models in comparison to the $\mathbb{R}^d$ setting.

Via

Abstract:Sampling from a multimodal distribution is a fundamental and challenging problem in computational science and statistics. Among various approaches proposed for this task, one popular method is Annealed Importance Sampling (AIS). In this paper, we propose an ensemble-based version of AIS by combining it with population-based Monte Carlo methods to improve its efficiency. By keeping track of an ensemble instead of a single particle along some continuation path between the starting distribution and the target distribution, we take advantage of the interaction within the ensemble to encourage the exploration of undiscovered modes. Specifically, our main idea is to utilize either the snooker algorithm or the genetic algorithm used in Evolutionary Monte Carlo. We discuss how the proposed algorithm can be implemented and derive a partial differential equation governing the evolution of the ensemble under the continuous time and mean-field limit. We also test the efficiency of the proposed algorithm on various continuous and discrete distributions.

Via

Figures and Tables:

Abstract:Why do neural networks trained with large learning rates for a longer time often lead to better generalization? In this paper, we delve into this question by examining the relation between training and testing loss in neural networks. Through visualization of these losses, we note that the training trajectory with a large learning rate navigates through the minima manifold of the training loss, finally nearing the neighborhood of the testing loss minimum. Motivated by these findings, we introduce a nonlinear model whose loss landscapes mirror those observed for real neural networks. Upon investigating the training process using SGD on our model, we demonstrate that an extended phase with a large learning rate steers our model towards the minimum norm solution of the training loss, which may achieve near-optimal generalization, thereby affirming the empirically observed benefits of late learning rate decay.

Via

Authors:Xun Tang, Michael Shavlovsky, Holakou Rahmanian, Elisa Tardini, Kiran Koshy Thekumparampil, Tesi Xiao, Lexing Ying

Abstract:Computing the optimal transport distance between statistical distributions is a fundamental task in machine learning. One remarkable recent advancement is entropic regularization and the Sinkhorn algorithm, which utilizes only matrix scaling and guarantees an approximated solution with near-linear runtime. Despite the success of the Sinkhorn algorithm, its runtime may still be slow due to the potentially large number of iterations needed for convergence. To achieve possibly super-exponential convergence, we present Sinkhorn-Newton-Sparse (SNS), an extension to the Sinkhorn algorithm, by introducing early stopping for the matrix scaling steps and a second stage featuring a Newton-type subroutine. Adopting the variational viewpoint that the Sinkhorn algorithm maximizes a concave Lyapunov potential, we offer the insight that the Hessian matrix of the potential function is approximately sparse. Sparsification of the Hessian results in a fast $O(n^2)$ per-iteration complexity, the same as the Sinkhorn algorithm. In terms of total iteration count, we observe that the SNS algorithm converges orders of magnitude faster across a wide range of practical cases, including optimal transportation between empirical distributions and calculating the Wasserstein $W_1, W_2$ distance of discretized densities. The empirical performance is corroborated by a rigorous bound on the approximate sparsity of the Hessian matrix.

Via