Abstract:With the widespread usage of VR devices and contents, demands for 3D scene generation techniques become more popular. Existing 3D scene generation models, however, limit the target scene to specific domain, primarily due to their training strategies using 3D scan dataset that is far from the real-world. To address such limitation, we propose LucidDreamer, a domain-free scene generation pipeline by fully leveraging the power of existing large-scale diffusion-based generative model. Our LucidDreamer has two alternate steps: Dreaming and Alignment. First, to generate multi-view consistent images from inputs, we set the point cloud as a geometrical guideline for each image generation. Specifically, we project a portion of point cloud to the desired view and provide the projection as a guidance for inpainting using the generative model. The inpainted images are lifted to 3D space with estimated depth maps, composing a new points. Second, to aggregate the new points into the 3D scene, we propose an aligning algorithm which harmoniously integrates the portions of newly generated 3D scenes. The finally obtained 3D scene serves as initial points for optimizing Gaussian splats. LucidDreamer produces Gaussian splats that are highly-detailed compared to the previous 3D scene generation methods, with no constraint on domain of the target scene. Project page: https://luciddreamer-cvlab.github.io/
Abstract:The field of 3D human-body reconstruction (abbreviated as 3DHR) that utilizes parametric pose and shape representations has witnessed significant advancements in recent years. However, the application of 3DHR techniques to handle real-world, diverse scenes, known as in-the-wild data, still faces limitations. The primary challenge arises as curating accurate 3D human pose ground truth (GT) for in-the-wild scenes is still difficult to obtain due to various factors. Recent test-time refinement approaches on 3DHR leverage initial 2D off-the-shelf human keypoints information to support the lack of 3D supervision on in-the-wild data. However, we observed that additional 2D supervision alone could cause the overfitting issue on common 3DHR backbones, making the 3DHR test-time refinement task seem intractable. We answer this challenge by proposing a strategy that complements 3DHR test-time refinement work under a collaborative approach. Specifically, we initially apply a pre-adaptation approach that works by collaborating various 3DHR models in a single framework to directly improve their initial outputs. This approach is then further combined with the test-time adaptation work under specific settings that minimize the overfitting issue to further boost the 3DHR performance. The whole framework is termed as 3DHR-Co, and on the experiment sides, we showed that the proposed work can significantly enhance the scores of common classic 3DHR backbones up to -34 mm pose error suppression, putting them among the top list on the in-the-wild benchmark data. Such achievement shows that our approach helps unveil the true potential of the common classic 3DHR backbones. Based on these findings, we further investigate various settings on the proposed framework to better elaborate the capability of our collaborative approach in the 3DHR task.
Abstract:We present ExBluRF, a novel view synthesis method for extreme motion blurred images based on efficient radiance fields optimization. Our approach consists of two main components: 6-DOF camera trajectory-based motion blur formulation and voxel-based radiance fields. From extremely blurred images, we optimize the sharp radiance fields by jointly estimating the camera trajectories that generate the blurry images. In training, multiple rays along the camera trajectory are accumulated to reconstruct single blurry color, which is equivalent to the physical motion blur operation. We minimize the photo-consistency loss on blurred image space and obtain the sharp radiance fields with camera trajectories that explain the blur of all images. The joint optimization on the blurred image space demands painfully increasing computation and resources proportional to the blur size. Our method solves this problem by replacing the MLP-based framework to low-dimensional 6-DOF camera poses and voxel-based radiance fields. Compared with the existing works, our approach restores much sharper 3D scenes from challenging motion blurred views with the order of 10 times less training time and GPU memory consumption.
Abstract:In this report, we introduce NICE (New frontiers for zero-shot Image Captioning Evaluation) project and share the results and outcomes of 2023 challenge. This project is designed to challenge the computer vision community to develop robust image captioning models that advance the state-of-the-art both in terms of accuracy and fairness. Through the challenge, the image captioning models were tested using a new evaluation dataset that includes a large variety of visual concepts from many domains. There was no specific training data provided for the challenge, and therefore the challenge entries were required to adapt to new types of image descriptions that had not been seen during training. This report includes information on the newly proposed NICE dataset, evaluation methods, challenge results, and technical details of top-ranking entries. We expect that the outcomes of the challenge will contribute to the improvement of AI models on various vision-language tasks.
Abstract:Understanding how two hands interact with each other is a key component of accurate 3D interacting hand mesh recovery. However, recent Transformer-based methods struggle to learn the interaction between two hands as they directly utilize two hand features as input tokens, which results in distant token problem. The distant token problem represents that input tokens are in heterogeneous spaces, leading Transformer to fail in capturing correlation between input tokens. Previous Transformer-based methods suffer from the problem especially when poses of two hands are very different as they project features from a backbone to separate left and right hand-dedicated features. We present EANet, extract-and-adaptation network, with EABlock, the main component of our network. Rather than directly utilizing two hand features as input tokens, our EABlock utilizes two complementary types of novel tokens, SimToken and JoinToken, as input tokens. Our two novel tokens are from a combination of separated two hand features; hence, it is much more robust to the distant token problem. Using the two type of tokens, our EABlock effectively extracts interaction feature and adapts it to each hand. The proposed EANet achieves the state-of-the-art performance on 3D interacting hands benchmarks. The codes are available at https://github.com/jkpark0825/EANet.
Abstract:In this paper, we propose P3D, the human part-wise motion context learning framework for sign language recognition. Our main contributions lie in two dimensions: learning the part-wise motion context and employing the pose ensemble to utilize 2D and 3D pose jointly. First, our empirical observation implies that part-wise context encoding benefits the performance of sign language recognition. While previous methods of sign language recognition learned motion context from the sequence of the entire pose, we argue that such methods cannot exploit part-specific motion context. In order to utilize part-wise motion context, we propose the alternating combination of a part-wise encoding Transformer (PET) and a whole-body encoding Transformer (WET). PET encodes the motion contexts from a part sequence, while WET merges them into a unified context. By learning part-wise motion context, our P3D achieves superior performance on WLASL compared to previous state-of-the-art methods. Second, our framework is the first to ensemble 2D and 3D poses for sign language recognition. Since the 3D pose holds rich motion context and depth information to distinguish the words, our P3D outperformed the previous state-of-the-art methods employing a pose ensemble.
Abstract:Despite recent advances in 3D human mesh reconstruction, domain gap between training and test data is still a major challenge. Several prior works tackle the domain gap problem via test-time adaptation that fine-tunes a network relying on 2D evidence (e.g., 2D human keypoints) from test images. However, the high reliance on 2D evidence during adaptation causes two major issues. First, 2D evidence induces depth ambiguity, preventing the learning of accurate 3D human geometry. Second, 2D evidence is noisy or partially non-existent during test time, and such imperfect 2D evidence leads to erroneous adaptation. To overcome the above issues, we introduce CycleAdapt, which cyclically adapts two networks: a human mesh reconstruction network (HMRNet) and a human motion denoising network (MDNet), given a test video. In our framework, to alleviate high reliance on 2D evidence, we fully supervise HMRNet with generated 3D supervision targets by MDNet. Our cyclic adaptation scheme progressively elaborates the 3D supervision targets, which compensate for imperfect 2D evidence. As a result, our CycleAdapt achieves state-of-the-art performance compared to previous test-time adaptation methods. The codes are available at https://github.com/hygenie1228/CycleAdapt_RELEASE.
Abstract:Quantization is a promising approach to reduce the high computational complexity of image super-resolution (SR) networks. However, compared to high-level tasks like image classification, low-bit quantization leads to severe accuracy loss in SR networks. This is because feature distributions of SR networks are significantly divergent for each channel or input image, and is thus difficult to determine a quantization range. Existing SR quantization works approach this distribution mismatch problem by dynamically adapting quantization ranges to the variant distributions during test time. However, such dynamic adaptation incurs additional computational costs that limit the benefits of quantization. Instead, we propose a new quantization-aware training framework that effectively Overcomes the Distribution Mismatch problem in SR networks without the need for dynamic adaptation. Intuitively, the mismatch can be reduced by directly regularizing the variance in features during training. However, we observe that variance regularization can collide with the reconstruction loss during training and adversely impact SR accuracy. Thus, we avoid the conflict between two losses by regularizing the variance only when the gradients of variance regularization are cooperative with that of reconstruction. Additionally, to further reduce the distribution mismatch, we introduce distribution offsets to layers with a significant mismatch, which either scales or shifts channel-wise features. Our proposed algorithm, called ODM, effectively reduces the mismatch in distributions with minimal computational overhead. Experimental results show that ODM effectively outperforms existing SR quantization approaches with similar or fewer computations, demonstrating the importance of reducing the distribution mismatch problem. Our code is available at https://github.com/Cheeun/ODM.
Abstract:Single image super-resolution (SISR) is a challenging ill-posed problem that aims to up-sample a given low-resolution (LR) image to a high-resolution (HR) counterpart. Due to the difficulty in obtaining real LR-HR training pairs, recent approaches are trained on simulated LR images degraded by simplified down-sampling operators, e.g., bicubic. Such an approach can be problematic in practice because of the large gap between the synthesized and real-world LR images. To alleviate the issue, we propose a novel Invertible scale-Conditional Function (ICF), which can scale an input image and then restore the original input with different scale conditions. By leveraging the proposed ICF, we construct a novel self-supervised SISR framework (ICF-SRSR) to handle the real-world SR task without using any paired/unpaired training data. Furthermore, our ICF-SRSR can generate realistic and feasible LR-HR pairs, which can make existing supervised SISR networks more robust. Extensive experiments demonstrate the effectiveness of the proposed method in handling SISR in a fully self-supervised manner. Our ICF-SRSR demonstrates superior performance compared to the existing methods trained on synthetic paired images in real-world scenarios and exhibits comparable performance compared to state-of-the-art supervised/unsupervised methods on public benchmark datasets.
Abstract:Hands, one of the most dynamic parts of our body, suffer from blur due to their active movements. However, previous 3D hand mesh recovery methods have mainly focused on sharp hand images rather than considering blur due to the absence of datasets providing blurry hand images. We first present a novel dataset BlurHand, which contains blurry hand images with 3D groundtruths. The BlurHand is constructed by synthesizing motion blur from sequential sharp hand images, imitating realistic and natural motion blurs. In addition to the new dataset, we propose BlurHandNet, a baseline network for accurate 3D hand mesh recovery from a blurry hand image. Our BlurHandNet unfolds a blurry input image to a 3D hand mesh sequence to utilize temporal information in the blurry input image, while previous works output a static single hand mesh. We demonstrate the usefulness of BlurHand for the 3D hand mesh recovery from blurry images in our experiments. The proposed BlurHandNet produces much more robust results on blurry images while generalizing well to in-the-wild images. The training codes and BlurHand dataset are available at https://github.com/JaehaKim97/BlurHand_RELEASE.