Abstract:Recent advancements in machine learning provide methods to train autonomous agents capable of handling the increasing complexity of sequential decision-making in robotics. Imitation Learning (IL) is a prominent approach, where agents learn to control robots based on human demonstrations. However, IL commonly suffers from violating the independent and identically distributed (i.i.d) assumption in robotic tasks. Interactive Imitation Learning (IIL) achieves improved performance by allowing agents to learn from interactive feedback from human teachers. Despite these improvements, both approaches come with significant costs due to the necessity of human involvement. Leveraging the emergent capabilities of Large Language Models (LLMs) in reasoning and generating human-like responses, we introduce LLM-iTeach -- a novel IIL framework that utilizes an LLM as an interactive teacher to enhance agent performance while alleviating the dependence on human resources. Firstly, LLM-iTeach uses a hierarchical prompting strategy that guides the LLM in generating a policy in Python code. Then, with a designed similarity-based feedback mechanism, LLM-iTeach provides corrective and evaluative feedback interactively during the agent's training. We evaluate LLM-iTeach against baseline methods such as Behavior Cloning (BC), an IL method, and CEILing, a state-of-the-art IIL method using a human teacher, on various robotic manipulation tasks. Our results demonstrate that LLM-iTeach surpasses BC in the success rate and achieves or even outscores that of CEILing, highlighting the potential of LLMs as cost-effective, human-like teachers in interactive learning environments. We further demonstrate the method's potential for generalization by evaluating it on additional tasks. The code and prompts are provided at: https://github.com/Tubicor/LLM-iTeach.
Abstract:Bimanual robotic manipulation provides significant versatility, but also presents an inherent challenge due to the complexity involved in the spatial and temporal coordination between two hands. Existing works predominantly focus on attaining human-level manipulation skills for robotic hands, yet little attention has been paid to task planning on long-horizon timescales. With their outstanding in-context learning and zero-shot generation abilities, Large Language Models (LLMs) have been applied and grounded in diverse robotic embodiments to facilitate task planning. However, LLMs still suffer from errors in long-horizon reasoning and from hallucinations in complex robotic tasks, lacking a guarantee of logical correctness when generating the plan. Previous works, such as LLM+P, extended LLMs with symbolic planners. However, none have been successfully applied to bimanual robots. New challenges inevitably arise in bimanual manipulation, necessitating not only effective task decomposition but also efficient task allocation. To address these challenges, this paper introduces LLM+MAP, a bimanual planning framework that integrates LLM reasoning and multi-agent planning, automating effective and efficient bimanual task planning. We conduct simulated experiments on various long-horizon manipulation tasks of differing complexity. Our method is built using GPT-4o as the backend, and we compare its performance against plans generated directly by LLMs, including GPT-4o, V3 and also recent strong reasoning models o1 and R1. By analyzing metrics such as planning time, success rate, group debits, and planning-step reduction rate, we demonstrate the superior performance of LLM+MAP, while also providing insights into robotic reasoning. Code is available at https://github.com/Kchu/LLM-MAP.
Abstract:Although there has been rapid progress in endowing robots with the ability to solve complex manipulation tasks, generating control policies for bimanual robots to solve tasks involving two hands is still challenging because of the difficulties in effective temporal and spatial coordination. With emergent abilities in terms of step-by-step reasoning and in-context learning, Large Language Models (LLMs) have taken control of a variety of robotic tasks. However, the nature of language communication via a single sequence of discrete symbols makes LLM-based coordination in continuous space a particular challenge for bimanual tasks. To tackle this challenge for the first time by an LLM, we present LAnguage-model-based Bimanual ORchestration (LABOR), an agent utilizing an LLM to analyze task configurations and devise coordination control policies for addressing long-horizon bimanual tasks. In the simulated environment, the LABOR agent is evaluated through several everyday tasks on the NICOL humanoid robot. Reported success rates indicate that overall coordination efficiency is close to optimal performance, while the analysis of failure causes, classified into spatial and temporal coordination and skill selection, shows that these vary over tasks. The project website can be found at http://labor-agent.github.io
Abstract:Reinforcement Learning (RL) plays an important role in the robotic manipulation domain since it allows self-learning from trial-and-error interactions with the environment. Still, sample efficiency and reward specification seriously limit its potential. One possible solution involves learning from expert guidance. However, obtaining a human expert is impractical due to the high cost of supervising an RL agent, and developing an automatic supervisor is a challenging endeavor. Large Language Models (LLMs) demonstrate remarkable abilities to provide human-like feedback on user inputs in natural language. Nevertheless, they are not designed to directly control low-level robotic motions, as their pretraining is based on vast internet data rather than specific robotics data. In this paper, we introduce the Lafite-RL (Language agent feedback interactive Reinforcement Learning) framework, which enables RL agents to learn robotic tasks efficiently by taking advantage of LLMs' timely feedback. Our experiments conducted on RLBench tasks illustrate that, with simple prompt design in natural language, the Lafite-RL agent exhibits improved learning capabilities when guided by an LLM. It outperforms the baseline in terms of both learning efficiency and success rate, underscoring the efficacy of the rewards provided by an LLM.
Abstract:Recent advancements in large language models have showcased their remarkable generalizability across various domains. However, their reasoning abilities still have significant room for improvement, especially when confronted with scenarios requiring multi-step reasoning. Although large language models possess extensive knowledge, their behavior, particularly in terms of reasoning, often fails to effectively utilize this knowledge to establish a coherent thinking paradigm. Generative language models sometimes show hallucinations as their reasoning procedures are unconstrained by logical principles. Aiming to improve the zero-shot chain-of-thought reasoning ability of large language models, we propose Logical Chain-of-Thought (LogiCoT), a neurosymbolic framework that leverages principles from symbolic logic to verify and revise the reasoning processes accordingly. Experimental evaluations conducted on language tasks in diverse domains, including arithmetic, commonsense, symbolic, causal inference, and social problems, demonstrate the efficacy of the enhanced reasoning paradigm by logic.