Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed
Synthetic Petri Dish: A Novel Surrogate Model for Rapid Architecture Search

May 27, 2020
Aditya Rawal, Joel Lehman, Felipe Petroski Such, Jeff Clune, Kenneth O. Stanley


  Access Paper or Ask Questions

First return then explore

May 14, 2020
Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, Jeff Clune

* 45 pages, 13 figures, 4 tables; reorganized sections and modified SI text extensively 

  Access Paper or Ask Questions

Enhanced POET: Open-Ended Reinforcement Learning through Unbounded Invention of Learning Challenges and their Solutions

Apr 13, 2020
Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeff Clune, Kenneth O. Stanley

* 23 pages, 14 figures 

  Access Paper or Ask Questions

Fiber: A Platform for Efficient Development and Distributed Training for Reinforcement Learning and Population-Based Methods

Mar 25, 2020
Jiale Zhi, Rui Wang, Jeff Clune, Kenneth O. Stanley


  Access Paper or Ask Questions

Learning to Continually Learn

Mar 04, 2020
Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O. Stanley, Jeff Clune, Nick Cheney


  Access Paper or Ask Questions

Backpropamine: training self-modifying neural networks with differentiable neuromodulated plasticity

Feb 24, 2020
Thomas Miconi, Aditya Rawal, Jeff Clune, Kenneth O. Stanley

* 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019 
* Presented at the 7th International Conference on Learning Representations (ICLR 2019) 

  Access Paper or Ask Questions

Improving Deep Neuroevolution via Deep Innovation Protection

Dec 29, 2019
Sebastian Risi, Kenneth O. Stanley


  Access Paper or Ask Questions

Generative Teaching Networks: Accelerating Neural Architecture Search by Learning to Generate Synthetic Training Data

Dec 17, 2019
Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth O. Stanley, Jeff Clune


  Access Paper or Ask Questions

An Overview of Open-Ended Evolution: Editorial Introduction to the Open-Ended Evolution II Special Issue

Sep 10, 2019
Norman Packard, Mark A. Bedau, Alastair Channon, Takashi Ikegami, Steen Rasmussen, Kenneth O. Stanley, Tim Taylor

* Artificial Life, 25(2), pp. 93-103, 2019 
* This article is published in the Artificial Life journal (https://www.mitpressjournals.org/loi/artl) and is copyright (c) 2019 Massachusetts Institute of Technology. It it posted on arXiv.org after the publication embargo period in accordance with MIT Press Journals' author posting guidelines (https://www.mitpressjournals.org/for_authors#authorposting

  Access Paper or Ask Questions

Evolvability ES: Scalable and Direct Optimization of Evolvability

Jul 13, 2019
Alexander Gajewski, Jeff Clune, Kenneth O. Stanley, Joel Lehman

* Published in GECCO 2019 

  Access Paper or Ask Questions

Go-Explore: a New Approach for Hard-Exploration Problems

Jan 30, 2019
Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O. Stanley, Jeff Clune

* 37 pages, 14 figures 

  Access Paper or Ask Questions

Paired Open-Ended Trailblazer (POET): Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their Solutions

Jan 09, 2019
Rui Wang, Joel Lehman, Jeff Clune, Kenneth O. Stanley

* 27 pages, 8 figures 

  Access Paper or Ask Questions

Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents

Oct 29, 2018
Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth O. Stanley, Jeff Clune


  Access Paper or Ask Questions

The Surprising Creativity of Digital Evolution: A Collection of Anecdotes from the Evolutionary Computation and Artificial Life Research Communities

Aug 14, 2018
Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Lee Altenberg, Julie Beaulieu, Peter J. Bentley, Samuel Bernard, Guillaume Beslon, David M. Bryson, Patryk Chrabaszcz, Nick Cheney, Antoine Cully, Stephane Doncieux, Fred C. Dyer, Kai Olav Ellefsen, Robert Feldt, Stephan Fischer, Stephanie Forrest, Antoine Frénoy, Christian Gagné, Leni Le Goff, Laura M. Grabowski, Babak Hodjat, Frank Hutter, Laurent Keller, Carole Knibbe, Peter Krcah, Richard E. Lenski, Hod Lipson, Robert MacCurdy, Carlos Maestre, Risto Miikkulainen, Sara Mitri, David E. Moriarty, Jean-Baptiste Mouret, Anh Nguyen, Charles Ofria, Marc Parizeau, David Parsons, Robert T. Pennock, William F. Punch, Thomas S. Ray, Marc Schoenauer, Eric Shulte, Karl Sims, Kenneth O. Stanley, François Taddei, Danesh Tarapore, Simon Thibault, Westley Weimer, Richard Watson, Jason Yosinski


  Access Paper or Ask Questions

Born to Learn: the Inspiration, Progress, and Future of Evolved Plastic Artificial Neural Networks

Aug 08, 2018
Andrea Soltoggio, Kenneth O. Stanley, Sebastian Risi

* Neural Networks, 2018 

  Access Paper or Ask Questions

Differentiable plasticity: training plastic neural networks with backpropagation

Jul 31, 2018
Thomas Miconi, Jeff Clune, Kenneth O. Stanley

* Proceedings of the 35th International Conference on Machine Learning (ICML2018), Stockholm, Sweden, PMLR 80, 2018 
* Presented at ICML 2018 

  Access Paper or Ask Questions

Fitted Learning: Models with Awareness of their Limits

Jul 09, 2018
Navid Kardan, Kenneth O. Stanley


  Access Paper or Ask Questions

VINE: An Open Source Interactive Data Visualization Tool for Neuroevolution

May 03, 2018
Rui Wang, Jeff Clune, Kenneth O. Stanley


  Access Paper or Ask Questions

ES Is More Than Just a Traditional Finite-Difference Approximator

May 01, 2018
Joel Lehman, Jay Chen, Jeff Clune, Kenneth O. Stanley


  Access Paper or Ask Questions

Safe Mutations for Deep and Recurrent Neural Networks through Output Gradients

May 01, 2018
Joel Lehman, Jay Chen, Jeff Clune, Kenneth O. Stanley


  Access Paper or Ask Questions

Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning

Apr 20, 2018
Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O. Stanley, Jeff Clune


  Access Paper or Ask Questions

On the Relationship Between the OpenAI Evolution Strategy and Stochastic Gradient Descent

Dec 18, 2017
Xingwen Zhang, Jeff Clune, Kenneth O. Stanley


  Access Paper or Ask Questions

The Emergence of Canalization and Evolvability in an Open-Ended, Interactive Evolutionary System

Apr 17, 2017
Joost Huizinga, Kenneth O. Stanley, Jeff Clune

* SI can be found at: http://www.evolvingai.org/files/SI.zip 

  Access Paper or Ask Questions

A Proposed Infrastructure for Adding Online Interaction to Any Evolutionary Domain

Jul 11, 2014
Paul Szerlip, Kenneth O. Stanley

* Presented at WebAL-1: Workshop on Artificial Life and the Web 2014 (arXiv:1406.2507) 

  Access Paper or Ask Questions

Unsupervised Feature Learning through Divergent Discriminative Feature Accumulation

Jun 10, 2014
Paul A. Szerlip, Gregory Morse, Justin K. Pugh, Kenneth O. Stanley

* Corrected citation formatting 

  Access Paper or Ask Questions

Evolvability Is Inevitable: Increasing Evolvability Without the Pressure to Adapt

Feb 05, 2013
Joel Lehman, Kenneth O. Stanley


  Access Paper or Ask Questions

Exploring Promising Stepping Stones by Combining Novelty Search with Interactive Evolution

Jul 28, 2012
Brian G. Woolley, Kenneth O. Stanley

* 15 pages, 7 figures 

  Access Paper or Ask Questions