Abstract:Efficient Coverage Path Planning (CPP) is necessary for autonomous robotic lawnmowers to effectively navigate and maintain lawns with diverse and irregular shapes. This paper introduces a comprehensive end-to-end pipeline for CPP, designed to convert user-defined boundaries on an aerial map into optimized coverage paths seamlessly. The pipeline includes user input extraction, coordinate transformation, area decomposition and path generation using our novel AdaptiveDecompositionCPP algorithm, preview and customization through an interactive coverage path visualizer, and conversion to actionable GPS waypoints. The AdaptiveDecompositionCPP algorithm combines cellular decomposition with an adaptive merging strategy to reduce non-mowing travel thereby enhancing operational efficiency. Experimental evaluations, encompassing both simulations and real-world lawnmower tests, demonstrate the effectiveness of the framework in coverage completeness and mowing efficiency.
Abstract:Visual loop closure detection traditionally relies on place recognition methods to retrieve candidate loops that are validated using computationally expensive RANSAC-based geometric verification. As false positive loop closures significantly degrade downstream pose graph estimates, verifying a large number of candidates in online simultaneous localization and mapping scenarios is constrained by limited time and compute resources. While most deep loop closure detection approaches only operate on pairs of keyframes, we relax this constraint by considering neighborhoods of multiple keyframes when detecting loops. In this work, we introduce LoopGNN, a graph neural network architecture that estimates loop closure consensus by leveraging cliques of visually similar keyframes retrieved through place recognition. By propagating deep feature encodings among nodes of the clique, our method yields high-precision estimates while maintaining high recall. Extensive experimental evaluations on the TartanDrive 2.0 and NCLT datasets demonstrate that LoopGNN outperforms traditional baselines. Additionally, an ablation study across various keypoint extractors demonstrates that our method is robust, regardless of the type of deep feature encodings used, and exhibits higher computational efficiency compared to classical geometric verification baselines. We release our code, supplementary material, and keyframe data at https://loopgnn.cs.uni-freiburg.de.
Abstract:We have developed service robot management system to facilitate effective collaboration between multiple units and types of robots in operation. This system is implemented by serverless architecture on cloud and using cellular based IoT communication. So it has not only usual cloud system advantage that it is not necessary to prepare dedicated server and network equipment, but it reduces management efforts of servers. We have tested the system with robots in a public facility, and successfully confirmed its performance and functionality.