Abstract:Relational deep learning (RDL) has emerged as a powerful paradigm for learning directly on relational databases by modeling entities and their relationships across multiple interconnected tables. As this paradigm evolves toward larger models and relational foundation models, scalable and realistic benchmarks are essential for enabling systematic evaluation and progress. In this paper, we introduce RelBench v2, a major expansion of the RelBench benchmark for RDL. RelBench v2 adds four large-scale relational datasets spanning scholarly publications, enterprise resource planning, consumer platforms, and clinical records, increasing the benchmark to 11 datasets comprising over 22 million rows across 29 tables. We further introduce autocomplete tasks, a new class of predictive objectives that require models to infer missing attribute values directly within relational tables while respecting temporal constraints, expanding beyond traditional forecasting tasks constructed via SQL queries. In addition, RelBench v2 expands beyond its native datasets by integrating external benchmarks and evaluation frameworks: we translate event streams from the Temporal Graph Benchmark into relational schemas for unified relational-temporal evaluation, interface with ReDeLEx to provide uniform access to 70+ real-world databases suitable for pretraining, and incorporate 4DBInfer datasets and tasks to broaden multi-table prediction coverage. Experimental results demonstrate that RDL models consistently outperform single-table baselines across autocomplete, forecasting, and recommendation tasks, highlighting the importance of modeling relational structure explicitly.
Abstract:We present Step-wise Policy for Rare-tool Knowledge (SPaRK), a novel reinforcement learning framework that teaches large language models to explore diverse tool usage patterns beyond conventional high-temperature sampling. Building on recent advances in step-wise reinforcement learning, we introduce a dual-objective reward system that simultaneously optimizes for answer quality and tool diversity, training a Llama-3.1 8B model through offline PPO on synthetically generated trajectories from the MMLU-Pro dataset. Our approach uniquely employs a rarity-first exploitation strategy where a GPT-4o judge scores candidate actions across eight distinct tools plus chain-of-thought reasoning, with the policy favoring less-frequently used but still viable tools to encourage systematic exploration. Empirical results demonstrate that SPaRK achieves competitive performance across 14 MMLU-Pro categories while exhibiting significantly higher entropy in tool selection compared to both baseline and supervised fine-tuning approaches, suggesting that algorithmic exploration through explicit tool diversity can enhance reasoning capabilities without sacrificing accuracy.
Abstract:We present a foundation modeling framework that leverages deep learning to uncover latent genetic signatures across the hematopoietic hierarchy. Our approach trains a fully connected autoencoder on multipotent progenitor cells, reducing over 20,000 gene features to a 256-dimensional latent space that captures predictive information for both progenitor and downstream differentiated cells such as monocytes and lymphocytes. We validate the quality of these embeddings by training feed-forward, transformer, and graph convolutional architectures for blood disease diagnosis tasks. We also explore zero-shot prediction using a progenitor disease state classification model to classify downstream cell conditions. Our models achieve greater than 95% accuracy for multi-class classification, and in the zero-shot setting, we achieve greater than 0.7 F1-score on the binary classification task. Future work should improve embeddings further to increase robustness on lymphocyte classification specifically.