Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Justin Gottschlich

Justin Gottschlich

Intel Labs, University of Pennsylvania

Toward Code Generation: A Survey and Lessons from Semantic Parsing


Apr 26, 2021
Celine Lee, Justin Gottschlich, Dan Roth

* 12 pages, 6 figures 

  Access Paper or Ask Questions

ControlFlag: A Self-supervised Idiosyncratic Pattern Detection System for Software Control Structures


Nov 06, 2020
Niranjan Hasabnis, Justin Gottschlich

* 12 pages, 3 figures, 2 tables 

  Access Paper or Ask Questions

Class-Weighted Evaluation Metrics for Imbalanced Data Classification


Oct 12, 2020
Akhilesh Gupta, Nesime Tatbul, Ryan Marcus, Shengtian Zhou, Insup Lee, Justin Gottschlich

* 11 pages 

  Access Paper or Ask Questions

MISIM: An End-to-End Neural Code Similarity System


Jun 15, 2020
Fangke Ye, Shengtian Zhou, Anand Venkat, Ryan Marcus, Nesime Tatbul, Jesmin Jahan Tithi, Paul Petersen, Timothy Mattson, Tim Kraska, Pradeep Dubey, Vivek Sarkar, Justin Gottschlich

* arXiv admin note: text overlap with arXiv:2003.11118 

  Access Paper or Ask Questions

Software Language Comprehension using a Program-Derived Semantic Graph


Apr 03, 2020
Roshni G. Iyer, Yizhou Sun, Wei Wang, Justin Gottschlich


  Access Paper or Ask Questions

Context-Aware Parse Trees


Mar 24, 2020
Fangke Ye, Shengtian Zhou, Anand Venkat, Ryan Marcus, Paul Petersen, Jesmin Jahan Tithi, Tim Mattson, Tim Kraska, Pradeep Dubey, Vivek Sarkar, Justin Gottschlich


  Access Paper or Ask Questions

An Abstraction-Based Framework for Neural Network Verification


Oct 31, 2019
Yizhak Yisrael Elboher, Justin Gottschlich, Guy Katz


  Access Paper or Ask Questions

Learning Fitness Functions for Genetic Algorithms


Sep 10, 2019
Shantanu Mandal, Todd A. Anderson, Justin Gottschlich, Shengtian Zhou, Abdullah Muzahid


  Access Paper or Ask Questions

NetSyn: Neural Evolutionary Technique to Synthesize Programs


Aug 22, 2019
Shantanu Mandal, Todd A. Anderson, Mejbah Alam, Justin Gottschlich, Abdullah Muzahid


  Access Paper or Ask Questions

SysML: The New Frontier of Machine Learning Systems


May 01, 2019
Alexander Ratner, Dan Alistarh, Gustavo Alonso, David G. Andersen, Peter Bailis, Sarah Bird, Nicholas Carlini, Bryan Catanzaro, Jennifer Chayes, Eric Chung, Bill Dally, Jeff Dean, Inderjit S. Dhillon, Alexandros Dimakis, Pradeep Dubey, Charles Elkan, Grigori Fursin, Gregory R. Ganger, Lise Getoor, Phillip B. Gibbons, Garth A. Gibson, Joseph E. Gonzalez, Justin Gottschlich, Song Han, Kim Hazelwood, Furong Huang, Martin Jaggi, Kevin Jamieson, Michael I. Jordan, Gauri Joshi, Rania Khalaf, Jason Knight, Jakub Konečný, Tim Kraska, Arun Kumar, Anastasios Kyrillidis, Aparna Lakshmiratan, Jing Li, Samuel Madden, H. Brendan McMahan, Erik Meijer, Ioannis Mitliagkas, Rajat Monga, Derek Murray, Kunle Olukotun, Dimitris Papailiopoulos, Gennady Pekhimenko, Theodoros Rekatsinas, Afshin Rostamizadeh, Christopher Ré, Christopher De Sa, Hanie Sedghi, Siddhartha Sen, Virginia Smith, Alex Smola, Dawn Song, Evan Sparks, Ion Stoica, Vivienne Sze, Madeleine Udell, Joaquin Vanschoren, Shivaram Venkataraman, Rashmi Vinayak, Markus Weimer, Andrew Gordon Wilson, Eric Xing, Matei Zaharia, Ce Zhang, Ameet Talwalkar


  Access Paper or Ask Questions

Precision and Recall for Time Series


Oct 28, 2018
Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, Justin Gottschlich

* 11 pages, 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montreal, Canada 

  Access Paper or Ask Questions

The Three Pillars of Machine Programming


May 08, 2018
Justin Gottschlich, Armando Solar-Lezama, Nesime Tatbul, Michael Carbin, Martin Rinard, Regina Barzilay, Saman Amarasinghe, Joshua B Tenenbaum, Tim Mattson


  Access Paper or Ask Questions

Greenhouse: A Zero-Positive Machine Learning System for Time-Series Anomaly Detection


Feb 11, 2018
Tae Jun Lee, Justin Gottschlich, Nesime Tatbul, Eric Metcalf, Stan Zdonik


  Access Paper or Ask Questions

Precision and Recall for Range-Based Anomaly Detection


Feb 11, 2018
Tae Jun Lee, Justin Gottschlich, Nesime Tatbul, Eric Metcalf, Stan Zdonik


  Access Paper or Ask Questions

Toward Scalable Verification for Safety-Critical Deep Networks


Feb 02, 2018
Lindsey Kuper, Guy Katz, Justin Gottschlich, Kyle Julian, Clark Barrett, Mykel Kochenderfer

* Accepted for presentation at SysML 2018 

  Access Paper or Ask Questions

Paranom: A Parallel Anomaly Dataset Generator


Jan 09, 2018
Justin Gottschlich


  Access Paper or Ask Questions

AutoPerf: A Generalized Zero-Positive Learning System to Detect Software Performance Anomalies


Nov 19, 2017
Mohammad Mejbah ul Alam, Justin Gottschlich, Abdullah Muzahid


  Access Paper or Ask Questions

AI Programmer: Autonomously Creating Software Programs Using Genetic Algorithms


Sep 17, 2017
Kory Becker, Justin Gottschlich


  Access Paper or Ask Questions