Abstract:Large Language Models (LLMs) have emerged as foundational infrastructure in the pursuit of Artificial General Intelligence (AGI). Despite their remarkable capabilities in language perception and generation, current LLMs fundamentally lack a unified and structured architecture for handling memory. They primarily rely on parametric memory (knowledge encoded in model weights) and ephemeral activation memory (context-limited runtime states). While emerging methods like Retrieval-Augmented Generation (RAG) incorporate plaintext memory, they lack lifecycle management and multi-modal integration, limiting their capacity for long-term knowledge evolution. To address this, we introduce MemOS, a memory operating system designed for LLMs that, for the first time, elevates memory to a first-class operational resource. It builds unified mechanisms for representation, organization, and governance across three core memory types: parametric, activation, and plaintext. At its core is the MemCube, a standardized memory abstraction that enables tracking, fusion, and migration of heterogeneous memory, while offering structured, traceable access across tasks and contexts. MemOS establishes a memory-centric execution framework with strong controllability, adaptability, and evolvability. It fills a critical gap in current LLM infrastructure and lays the groundwork for continual adaptation, personalized intelligence, and cross-platform coordination in next-generation intelligent systems.
Abstract:In this paper, we introduce a simple yet effective tabular data watermarking mechanism with statistical guarantees. We show theoretically that the proposed watermark can be effectively detected, while faithfully preserving the data fidelity, and also demonstrates appealing robustness against additive noise attack. The general idea is to achieve the watermarking through a strategic embedding based on simple data binning. Specifically, it divides the feature's value range into finely segmented intervals and embeds watermarks into selected ``green list" intervals. To detect the watermarks, we develop a principled statistical hypothesis-testing framework with minimal assumptions: it remains valid as long as the underlying data distribution has a continuous density function. The watermarking efficacy is demonstrated through rigorous theoretical analysis and empirical validation, highlighting its utility in enhancing the security of synthetic and real-world datasets.