Abstract:This paper investigates antenna coding based on pixel antennas as a new degree of freedom for enhancing multiple-input multiple-output (MIMO) wireless power transfer (WPT) systems. Antenna coding is closely related to the Fluid Antenna System (FAS) concept and further generalizes the radiation pattern reconfigurability. We first introduce a beamspace channel model to demonstrate reconfigurable radiation patterns enabled by antenna coders. By jointly optimizing the antenna coding and transmit beamforming with perfect channel state information (CSI), we exploit gains from antenna coding, transmit beamforming, and rectenna nonlinearity to maximize the output DC power. We adopt an alternating optimization approach with the quasi-Newton method and Successive Exhaustive Boolean Optimization (SEBO) method with warm-start to handle the transmit beamforming design and antenna coding design respectively. Finally, simulation results show that the proposed MIMO WPT system with pixel antennas achieves up to 15 dB gain in average output DC power compared with a conventional system with fixed antenna configuration, highlighting the potential of pixel antennas for boosting the WPT efficiency.
Abstract:Integrating cell-free massive multiple-input multiple-output (MIMO) with simultaneous transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) can provide ubiquitous connectivity and enhance coverage. This paper explores a STAR-RIS-assisted cell-free massive MIMO system featuring multi-antenna users, multi-antenna access points (APs), and multi-element STAR-RISs, accounting for transceiver hardware impairments. We first establish the system model of STAR-RIS-assisted cell-free massive MIMO systems with multi-antenna users. Subsequently, we analyze two uplink implementations: local processing and centralized decoding (Level 1), and fully centralized processing (Level 2), both implementations incorporating hardware impairments. We study the local and global minimum mean square error (MMSE) combining schemes to maximize the uplink spectral efficiency (SE) for Level 1 and Level 2, respectively. The MMSE-based successive interference cancellation detector is utilized to compute the uplink SE. We introduce the optimal large-scale fading decoding at the central processing unit and derive closed-form SE expressions utilizing maximum ratio combining at APs for Level 1. Our numerical results reveal that hardware impairments negatively affect SE performance, particularly at the user end. However, this degradation can be mitigated by increasing the number of user antennas. Enhancing the number of APs and STAR-RIS elements also improves performance and mitigates performance degradation. Notably, unlike conventional results based on direct links, our findings show that Level 2 consistently outperforms Level 1 with arbitrary combining schemes for the proposed STAR-RIS-assisted system.
Abstract:Simultaneous Transmitting and Reflecting Reconfigurable Intelligent Surfaces (STAR-RISs) are being explored for the next generation of sixth-generation (6G) networks. A promising configuration for their deployment is within cell-free massive multiple-input multiple-output (MIMO) systems. However, despite the advantages that STAR-RISs could bring, challenges such as electromagnetic interference (EMI) and phase errors may lead to significant performance degradation. In this paper, we investigate the impact of EMI and phase errors on STAR-RIS-assisted cell-free massive MIMO systems and propose techniques to mitigate these effects. We introduce a novel projected gradient descent (GD) algorithm for STAR-RIS coefficient matrix design by minimizing the local channel estimation normalised mean square error. We also derive the closed-form expressions of the uplink and downlink spectral efficiency (SE) to analyze system performance with EMI and phase errors, in which fractional power control methods are applied for performance improvement. The results reveal that the projected GD algorithm can effectively tackle EMI and phase errors to improve estimation accuracy and compensate for performance degradation with nearly $10\%\sim20\%$ SE improvement. Moreover, increasing access points (APs), antennas per AP, and STAR-RIS elements can also improve SE performance. Applying STAR-RIS in the proposed system achieves a larger $25\%$-likely SE than conventional RISs. However, the advantages of employing more STAR-RIS elements are reduced when EMI is severe.
Abstract:This paper proposes a non-intrusive, declarative, dynamic and transparent system called `HiQ` to track Python program runtime information without compromising on the run-time system performance and losing insight. HiQ can be used for monolithic and distributed systems, offline and online applications. HiQ is developed when we optimize our large deep neural network (DNN) models which are written in Python, but it can be generalized to any Python program or distributed system, or even other languages like Java. We have implemented the system and adopted it in our deep learning model life cycle management system to catch the bottleneck while keeping our production code clean and highly performant. The implementation is open-sourced at: [https://github.com/oracle/hiq](https://github.com/oracle/hiq).