Abstract:Enabling multiple autonomous machines to perform reliably requires the development of efficient cooperative control algorithms. This paper presents a survey of algorithms that have been developed for controlling and coordinating autonomous machines in complex environments. We especially focus on task allocation methods using computational intelligence (CI) and deep reinforcement learning (RL). The advantages and disadvantages of the surveyed methods are analysed thoroughly. We also propose and discuss in detail various future research directions that shed light on how to improve existing algorithms or create new methods to enhance the employability and performance of autonomous machines in real-world applications. The findings indicate that CI and deep RL methods provide viable approaches to addressing complex task allocation problems in dynamic and uncertain environments. The recent development of deep RL has greatly contributed to the literature on controlling and coordinating autonomous machines, and it has become a growing trend in this area. It is envisaged that this paper will provide researchers and engineers with a comprehensive overview of progress in machine learning research related to autonomous machines. It also highlights underexplored areas, identifies emerging methodologies, and suggests new avenues for exploration in future research within this domain.
Abstract:The growing complexity of network traffic and demand for ultra-low latency communication require smarter packet traffic management. Existing Deep Learning-based queuing approaches struggle with dynamic network scenarios and demand high engineering effort. We propose AQM-LLM, distilling Large Language Models (LLMs) with few-shot learning, contextual understanding, and pattern recognition to improve Active Queue Management (AQM) [RFC 9330] with minimal manual effort. We consider a specific case where AQM is Low Latency, Low Loss, and Scalable Throughput (L4S) and our design of AQM-LLM builds on speculative decoding and reinforcement-based distilling of LLM by tackling congestion prevention in the L4S architecture using Explicit Congestion Notification (ECN) [RFC 9331] and periodic packet dropping. We develop a new open-source experimental platform by executing L4S-AQM on FreeBSD-14, providing interoperable modules to support LLM integration and facilitate IETF recognition through wider testing. Our extensive evaluations show L4S-LLM enhances queue management, prevents congestion, reduces latency, and boosts network performance, showcasing LLMs' adaptability and efficiency in uplifting AQM systems.
Abstract:Quantum Federated Learning (QFL) is an emerging concept that aims to unfold federated learning (FL) over quantum networks, enabling collaborative quantum model training along with local data privacy. We explore the challenges of deploying QFL on cloud platforms, emphasizing quantum intricacies and platform limitations. The proposed data-encoding-driven QFL, with a proof of concept (GitHub Open Source) using genomic data sets on quantum simulators, shows promising results.
Abstract:In this work, we propose and develop a simple experimental testbed to study the feasibility of a novel idea by coupling radio frequency (RF) sensing technology with Correlated Knowledge Distillation (CKD) theory towards designing lightweight, near real-time and precise human pose monitoring systems. The proposed CKD framework transfers and fuses pose knowledge from a robust "Teacher" model to a parameterized "Student" model, which can be a promising technique for obtaining accurate yet lightweight pose estimates. To assure its efficacy, we implemented CKD for distilling logits in our integrated Software Defined Radio (SDR)-based experimental setup and investigated the RF-visual signal correlation. Our CKD-RF sensing technique is characterized by two modes -- a camera-fed Teacher Class Network (e.g., images, videos) with an SDR-fed Student Class Network (e.g., RF signals). Specifically, our CKD model trains a dual multi-branch teacher and student network by distilling and fusing knowledge bases. The resulting CKD models are then subsequently used to identify the multimodal correlation and teach the student branch in reverse. Instead of simply aggregating their learnings, CKD training comprised multiple parallel transformations with the two domains, i.e., visual images and RF signals. Once trained, our CKD model can efficiently preserve privacy and utilize the multimodal correlated logits from the two different neural networks for estimating poses without using visual signals/video frames (by using only the RF signals).