Abstract:As the number of various positioning sensors and location-based devices increase, a huge amount of spatial and temporal information data is collected and accumulated. These data are expressed as trajectory data by connecting the data points in chronological sequence, and thses data contain movement information of any moving object. Particularly, in this study, urban vehicle trajectory prediction is studied using trajectory data of vehicles in urban traffic network. In the previous work, Recurrent Neural Network model for urban vehicle trajectory prediction is proposed. For the further improvement of the model, in this study, we propose Attention-based Recurrent Neural Network model for urban vehicle trajectory prediction. In this proposed model, we use attention mechanism to incorporate network traffic state data into urban vehicle trajectory prediction. The model is evaluated by using the Bluetooth data collected in Brisbane, Australia, which contains the movement information of private vehicles. The performance of the model is evaluated with 5 metrics, which are BLEU-1, BLEU-2, BLEU-3, BLEU-4, and METEOR. The result shows that ARNN model have better performance compared to RNN model.
Abstract:We propose doubly nested network(DNNet) where all neurons represent their own sub-models that solve the same task. Every sub-model is nested both layer-wise and channel-wise. While nesting sub-models layer-wise is straight-forward with deep-supervision as proposed in \cite{xie2015holistically}, channel-wise nesting has not been explored in the literature to our best knowledge. Channel-wise nesting is non-trivial as neurons between consecutive layers are all connected to each other. In this work, we introduce a technique to solve this problem by sorting channels topologically and connecting neurons accordingly. For the purpose, channel-causal convolutions are used. Slicing doubly nested network gives a working sub-network. The most notable application of our proposed network structure with slicing operation is resource-efficient inference. At test time, computing resources such as time and memory available for running the prediction algorithm can significantly vary across devices and applications. Given a budget constraint, we can slice the network accordingly and use a sub-model for inference within budget, requiring no additional computation such as training or fine-tuning after deployment. We demonstrate the effectiveness of our approach in several practical scenarios of utilizing available resource efficiently.
Abstract:Using neural networks in practical settings would benefit from the ability of the networks to learn new tasks throughout their lifetimes without forgetting the previous tasks. This ability is limited in the current deep neural networks by a problem called catastrophic forgetting, where training on new tasks tends to severely degrade performance on previous tasks. One way to lessen the impact of the forgetting problem is to constrain parameters that are important to previous tasks to stay close to the optimal parameters. Recently, multiple competitive approaches for computing the importance of the parameters with respect to the previous tasks have been presented. In this paper, we propose a learning to optimize algorithm for mitigating catastrophic forgetting. Instead of trying to formulate a new constraint function ourselves, we propose to train another neural network to predict parameter update steps that respect the importance of parameters to the previous tasks. In the proposed meta-training scheme, the update predictor is trained to minimize loss on a combination of current and past tasks. We show experimentally that the proposed approach works in the continual learning setting.
Abstract:Fully automating machine learning pipeline is one of the outstanding challenges of general artificial intelligence, as practical machine learning often requires costly human driven process, such as hyper-parameter tuning, algorithmic selection, and model selection. In this work, we consider the problem of executing automated, yet scalable search for finding optimal gradient based meta-learners in practice. As a solution, we apply progressive neural architecture search to proto-architectures by appealing to the model agnostic nature of general gradient based meta learners. In the presence of recent universality result of Finn \textit{et al.}\cite{finn:universality_maml:DBLP:/journals/corr/abs-1710-11622}, our search is a priori motivated in that neural network architecture search dynamics---automated or not---may be quite different from that of the classical setting with the same target tasks, due to the presence of the gradient update operator. A posteriori, our search algorithm, given appropriately designed search spaces, finds gradient based meta learners with non-intuitive proto-architectures that are narrowly deep, unlike the inception-like structures previously observed in the resulting architectures of traditional NAS algorithms. Along with these notable findings, the searched gradient based meta-learner achieves state-of-the-art results on the few shot classification problem on Mini-ImageNet with $76.29\%$ accuracy, which is an $13.18\%$ improvement over results reported in the original MAML paper. To our best knowledge, this work is the first successful AutoML implementation in the context of meta learning.
Abstract:Attempts to train a comprehensive artificial intelligence capable of solving multiple tasks have been impeded by a chronic problem called catastrophic forgetting. Although simply replaying all previous data alleviates the problem, it requires large memory and even worse, often infeasible in real world applications where the access to past data is limited. Inspired by the generative nature of hippocampus as a short-term memory system in primate brain, we propose the Deep Generative Replay, a novel framework with a cooperative dual model architecture consisting of a deep generative model ("generator") and a task solving model ("solver"). With only these two models, training data for previous tasks can easily be sampled and interleaved with those for a new task. We test our methods in several sequential learning settings involving image classification tasks.
Abstract:Learning to transfer visual attributes requires supervision dataset. Corresponding images with varying attribute values with the same identity are required for learning the transfer function. This largely limits their applications, because capturing them is often a difficult task. To address the issue, we propose an unsupervised method to learn to transfer visual attribute. The proposed method can learn the transfer function without any corresponding images. Inspecting visualization results from various unsupervised attribute transfer tasks, we verify the effectiveness of the proposed method.
Abstract:We propose an image based end-to-end learning framework that helps lane-change decisions for human drivers and autonomous vehicles. The proposed system, Safe Lane-Change Aid Network (SLCAN), trains a deep convolutional neural network to classify the status of adjacent lanes from rear view images acquired by cameras mounted on both sides of the vehicle. Rather than depending on any explicit object detection or tracking scheme, SLCAN reads the whole input image and directly decides whether initiation of the lane-change at the moment is safe or not. We collected and annotated 77,273 rear side view images to train and test SLCAN. Experimental results show that the proposed framework achieves 96.98% classification accuracy although the test images are from unseen roadways. We also visualize the saliency map to understand which part of image SLCAN looks at for correct decisions.
Abstract:While humans easily recognize relations between data from different domains without any supervision, learning to automatically discover them is in general very challenging and needs many ground-truth pairs that illustrate the relations. To avoid costly pairing, we address the task of discovering cross-domain relations given unpaired data. We propose a method based on generative adversarial networks that learns to discover relations between different domains (DiscoGAN). Using the discovered relations, our proposed network successfully transfers style from one domain to another while preserving key attributes such as orientation and face identity. Source code for official implementation is publicly available https://github.com/SKTBrain/DiscoGAN
Abstract:We propose an image super-resolution method (SR) using a deeply-recursive convolutional network (DRCN). Our network has a very deep recursive layer (up to 16 recursions). Increasing recursion depth can improve performance without introducing new parameters for additional convolutions. Albeit advantages, learning a DRCN is very hard with a standard gradient descent method due to exploding/vanishing gradients. To ease the difficulty of training, we propose two extensions: recursive-supervision and skip-connection. Our method outperforms previous methods by a large margin.
Abstract:We present a highly accurate single-image super-resolution (SR) method. Our method uses a very deep convolutional network inspired by VGG-net used for ImageNet classification \cite{simonyan2015very}. We find increasing our network depth shows a significant improvement in accuracy. Our final model uses 20 weight layers. By cascading small filters many times in a deep network structure, contextual information over large image regions is exploited in an efficient way. With very deep networks, however, convergence speed becomes a critical issue during training. We propose a simple yet effective training procedure. We learn residuals only and use extremely high learning rates ($10^4$ times higher than SRCNN \cite{dong2015image}) enabled by adjustable gradient clipping. Our proposed method performs better than existing methods in accuracy and visual improvements in our results are easily noticeable.