Abstract:Predicting High-definition (HD) map elements with high quality (high classification and localization scores) is crucial to the safety of autonomous driving vehicles. However, current methods perform poorly in high quality predictions due to inherent task misalignment. Two main factors are responsible for misalignment: 1) inappropriate task labels due to one-to-many matching queries sharing the same labels, and 2) sub-optimal task features due to task-shared sampling mechanism. In this paper, we reveal two inherent defects in current methods and develop a novel HD map construction method named DAMap to address these problems. Specifically, DAMap consists of three components: Distance-aware Focal Loss (DAFL), Hybrid Loss Scheme (HLS), and Task Modulated Deformable Attention (TMDA). The DAFL is introduced to assign appropriate classification labels for one-to-many matching samples. The TMDA is proposed to obtain discriminative task-specific features. Furthermore, the HLS is proposed to better utilize the advantages of the DAFL. We perform extensive experiments and consistently achieve performance improvement on the NuScenes and Argoverse2 benchmarks under different metrics, baselines, splits, backbones, and schedules. Code will be available at https://github.com/jpdong-xjtu/DAMap.
Abstract:Efficient point cloud representation is a fundamental element of Lidar-based 3D object detection. Recent grid-based detectors usually divide point clouds into voxels or pillars and construct single-stream networks in Bird's Eye View. However, these point cloud encoding paradigms underestimate the point representation in the vertical direction, which cause the loss of semantic or fine-grained information, especially for vertical sensitive objects like pedestrian and cyclists. In this paper, we propose an explicit vertical multi-scale representation learning framework, VPFusion, to combine the complementary information from both voxel and pillar streams. Specifically, VPFusion first builds upon a sparse voxel-pillar-based backbone. The backbone divides point clouds into voxels and pillars, then encodes features with 3D and 2D sparse convolution simultaneously. Next, we introduce the Sparse Fusion Layer (SFL), which establishes a bidirectional pathway for sparse voxel and pillar features to enable the interaction between them. Additionally, we present the Dense Fusion Neck (DFN) to effectively combine the dense feature maps from voxel and pillar branches with multi-scale. Extensive experiments on the large-scale Waymo Open Dataset and nuScenes Dataset demonstrate that VPFusion surpasses the single-stream baselines by a large margin and achieves state-of-the-art performance with real-time inference speed.