Abstract:Carousel interfaces are widely used in e-commerce and streaming services, but little research has been devoted to them. Previous studies of interfaces for presenting search and recommendation results have focused on single ranked lists, but it appears their results cannot be extrapolated to carousels due to the added complexity. Eye tracking is a highly informative approach to understanding how users click, yet there are no eye tracking studies concerning carousels. There are very few interaction datasets on recommenders with carousel interfaces and none that contain gaze data. We introduce the RecGaze dataset: the first comprehensive feedback dataset on carousels that includes eye tracking results, clicks, cursor movements, and selection explanations. The dataset comprises of interactions from 3 movie selection tasks with 40 different carousel interfaces per user. In total, 87 users and 3,477 interactions are logged. In addition to the dataset, its description and possible use cases, we provide results of a survey on carousel design and the first analysis of gaze data on carousels, which reveals a golden triangle or F-pattern browsing behavior. Our work seeks to advance the field of carousel interfaces by providing the first dataset with eye tracking results on carousels. In this manner, we provide and encourage an empirical understanding of interactions with carousel interfaces, for building better recommender systems through gaze information, and also encourage the development of gaze-based recommenders.
Abstract:The purpose of the MANILA24 Workshop on information retrieval for climate impact was to bring together researchers from academia, industry, governments, and NGOs to identify and discuss core research problems in information retrieval to assess climate change impacts. The workshop aimed to foster collaboration by bringing communities together that have so far not been very well connected -- information retrieval, natural language processing, systematic reviews, impact assessments, and climate science. The workshop brought together a diverse set of researchers and practitioners interested in contributing to the development of a technical research agenda for information retrieval to assess climate change impacts.
Abstract:Stochastic learning to rank (LTR) is a recent branch in the LTR field that concerns the optimization of probabilistic ranking models. Their probabilistic behavior enables certain ranking qualities that are impossible with deterministic models. For example, they can increase the diversity of displayed documents, increase fairness of exposure over documents, and better balance exploitation and exploration through randomization. A core difficulty in LTR is gradient estimation, for this reason, existing stochastic LTR methods have been limited to differentiable ranking models (e.g., neural networks). This is in stark contrast with the general field of LTR where Gradient Boosted Decision Trees (GBDTs) have long been considered the state-of-the-art. In this work, we address this gap by introducing the first stochastic LTR method for GBDTs. Our main contribution is a novel estimator for the second-order derivatives, i.e., the Hessian matrix, which is a requirement for effective GBDTs. To efficiently compute both the first and second-order derivatives simultaneously, we incorporate our estimator into the existing PL-Rank framework, which was originally designed for first-order derivatives only. Our experimental results indicate that stochastic LTR without the Hessian has extremely poor performance, whilst the performance is competitive with the current state-of-the-art with our estimated Hessian. Thus, through the contribution of our novel Hessian estimation method, we have successfully introduced GBDTs to stochastic LTR.