Abstract:Large Language Models (LLMs) achieve strong performance on diverse tasks but often exhibit cognitive inertia, struggling to follow instructions that conflict with the standardized patterns learned during supervised fine-tuning (SFT). To evaluate this limitation, we propose Inverse IFEval, a benchmark that measures models Counter-intuitive Abilitytheir capacity to override training-induced biases and comply with adversarial instructions. Inverse IFEval introduces eight types of such challenges, including Question Correction, Intentional Textual Flaws, Code without Comments, and Counterfactual Answering. Using a human-in-the-loop pipeline, we construct a dataset of 1012 high-quality Chinese and English questions across 23 domains, evaluated under an optimized LLM-as-a-Judge framework. Experiments on existing leading LLMs demonstrate the necessity of our proposed Inverse IFEval benchmark. Our findings emphasize that future alignment efforts should not only pursue fluency and factual correctness but also account for adaptability under unconventional contexts. We hope that Inverse IFEval serves as both a diagnostic tool and a foundation for developing methods that mitigate cognitive inertia, reduce overfitting to narrow patterns, and ultimately enhance the instruction-following reliability of LLMs in diverse and unpredictable real-world scenarios.
Abstract:Federated Learning (FL) is a collaborative machine learning technique where multiple clients work together with a central server to train a global model without sharing their private data. However, the distribution shift across non-IID datasets of clients poses a challenge to this one-model-fits-all method hindering the ability of the global model to effectively adapt to each client's unique local data. To echo this challenge, personalized FL (PFL) is designed to allow each client to create personalized local models tailored to their private data. While extensive research has scrutinized backdoor risks in FL, it has remained underexplored in PFL applications. In this study, we delve deep into the vulnerabilities of PFL to backdoor attacks. Our analysis showcases a tale of two cities. On the one hand, the personalization process in PFL can dilute the backdoor poisoning effects injected into the personalized local models. Furthermore, PFL systems can also deploy both server-end and client-end defense mechanisms to strengthen the barrier against backdoor attacks. On the other hand, our study shows that PFL fortified with these defense methods may offer a false sense of security. We propose \textit{PFedBA}, a stealthy and effective backdoor attack strategy applicable to PFL systems. \textit{PFedBA} ingeniously aligns the backdoor learning task with the main learning task of PFL by optimizing the trigger generation process. Our comprehensive experiments demonstrate the effectiveness of \textit{PFedBA} in seamlessly embedding triggers into personalized local models. \textit{PFedBA} yields outstanding attack performance across 10 state-of-the-art PFL algorithms, defeating the existing 6 defense mechanisms. Our study sheds light on the subtle yet potent backdoor threats to PFL systems, urging the community to bolster defenses against emerging backdoor challenges.