Abstract:Serverless computing has grown rapidly for serving Large Language Model (LLM) inference due to its pay-as-you-go pricing, fine-grained GPU usage, and rapid scaling. However, our analysis reveals that current serverless can effectively serve general LLM but fail with Low-Rank Adaptation (LoRA) inference due to three key limitations: 1) massive parameter redundancy among functions where 99% of weights are unnecessarily duplicated, 2) costly artifact loading latency beyond LLM loading, and 3) magnified resource contention when serving multiple LoRA LLMs. These inefficiencies lead to massive GPU wastage, increased Time-To-First-Token (TTFT), and high monetary costs. We propose ServerlessLoRA, a novel serverless inference system designed for faster and cheaper LoRA LLM serving. ServerlessLoRA enables secure backbone LLM sharing across isolated LoRA functions to reduce redundancy. We design a pre-loading method that pre-loads comprehensive LoRA artifacts to minimize cold-start latency. Furthermore, ServerlessLoRA employs contention aware batching and offloading to mitigate GPU resource conflicts during bursty workloads. Experiment on industrial workloads demonstrates that ServerlessLoRA reduces TTFT by up to 86% and cuts monetary costs by up to 89% compared to state-of-the-art LLM inference solutions.
Abstract:This paper addresses the Generalized Covariance Intersection (GCI) fusion method for labeled random finite sets. We propose a joint label space for the support of fused labeled random finite sets to represent the label association between different agents, avoiding the label consistency condition for the label-wise GCI fusion algorithm. Specifically, we devise the joint label space by the direct product of all label spaces for each agent. Then we apply the GCI fusion method to obtain the joint labeled multi-target density. The joint labeled RFS is then marginalized into a general labeled RFS, providing that each target is represented by a single Bernoulli component with a unique label. The joint labeled GCI (JL-GCI) for fusing LMB RFSs from different agents is demonstrated. We also propose the simplified JL-GCI method given the assumption that targets are well-separated in the scenario. The simulation result presents the effectiveness of label inconsistency and excellent performance in challenging tracking scenarios.