Abstract:While Large Language Models (LLMs) have emerged with remarkable capabilities in complex tasks through Chain-of-Thought reasoning, practical resource constraints have sparked interest in transferring these abilities to smaller models. However, achieving both domain performance and cross-domain generalization remains challenging. Existing approaches typically restrict students to following a single golden rationale and treat different reasoning paths independently. Due to distinct inductive biases and intrinsic preferences, alongside the student's evolving capacity and reasoning preferences during training, a teacher's "optimal" rationale could act as out-of-distribution noise. This misalignment leads to a degeneration of the student's latent reasoning distribution, causing suboptimal performance. To bridge this gap, we propose MIND, a capability-adaptive framework that transitions distillation from passive mimicry to active cognitive construction. We synthesize diverse teacher perspectives through a novel "Teaching Assistant" network. By employing a Feedback-Driven Inertia Calibration mechanism, this network utilizes inertia-filtered training loss to align supervision with the student's current adaptability, effectively enhancing performance while mitigating catastrophic forgetting. Extensive experiments demonstrate that MIND achieves state-of-the-art performance on both in-distribution and out-of-distribution benchmarks, and our sophisticated latent space analysis further confirms the mechanism of reasoning ability internalization.




Abstract:Recent advances in knowledge distillation have emphasized the importance of decoupling different knowledge components. While existing methods utilize momentum mechanisms to separate task-oriented and distillation gradients, they overlook the inherent conflict between target-class and non-target-class knowledge flows. Furthermore, low-confidence dark knowledge in non-target classes introduces noisy signals that hinder effective knowledge transfer. To address these limitations, we propose DeepKD, a novel training framework that integrates dual-level decoupling with adaptive denoising. First, through theoretical analysis of gradient signal-to-noise ratio (GSNR) characteristics in task-oriented and non-task-oriented knowledge distillation, we design independent momentum updaters for each component to prevent mutual interference. We observe that the optimal momentum coefficients for task-oriented gradient (TOG), target-class gradient (TCG), and non-target-class gradient (NCG) should be positively related to their GSNR. Second, we introduce a dynamic top-k mask (DTM) mechanism that gradually increases K from a small initial value to incorporate more non-target classes as training progresses, following curriculum learning principles. The DTM jointly filters low-confidence logits from both teacher and student models, effectively purifying dark knowledge during early training. Extensive experiments on CIFAR-100, ImageNet, and MS-COCO demonstrate DeepKD's effectiveness. Our code is available at https://github.com/haiduo/DeepKD.