Abstract:Diffusion models have been widely deployed in AIGC services; however, their reliance on opaque training data and procedures exposes a broad attack surface for backdoor injection. In practical auditing scenarios, due to the protection of intellectual property and commercial confidentiality, auditors are typically unable to access model parameters, rendering existing white-box or query-intensive detection methods impractical. More importantly, even after the backdoor is detected, existing detoxification approaches are often trapped in a dilemma between detoxification effectiveness and generation quality. In this work, we identify a previously unreported phenomenon called temporal noise unconsistency, where the noise predictions between adjacent diffusion timesteps is disrupted in specific temporal segments when the input is triggered, while remaining stable under clean inputs. Leveraging this finding, we propose Temporal Noise Consistency Defense (TNC-Defense), a unified framework for backdoor detection and detoxification. The framework first uses the adjacent timestep noise consistency to design a gray-box detection module, for identifying and locating anomalous diffusion timesteps. Furthermore, the framework uses the identified anomalous timesteps to construct a trigger-agnostic, timestep-aware detoxification module, which directly corrects the backdoor generation path. This effectively suppresses backdoor behavior while significantly reducing detoxification costs. We evaluate the proposed method under five representative backdoor attack scenarios and compare it with state-of-the-art defenses. The results show that TNC-Defense improves the average detection accuracy by $11\%$ with negligible additional overhead, and invalidates an average of $98.5\%$ of triggered samples with only a mild degradation in generation quality.
Abstract:Color photometric stereo enables single-shot surface reconstruction, extending conventional photometric stereo that requires multiple images of a static scene under varying illumination to dynamic scenarios. However, most existing approaches assume ideal distant lighting and Lambertian reflectance, leaving more practical near-light conditions and non-Lambertian surfaces underexplored. To overcome this limitation, we propose a framework that leverages neural implicit representations for depth and BRDF modeling under the assumption of mono-chromaticity (uniform chromaticity and homogeneous material), which alleviates the inherent ill-posedness of color photometric stereo and allows for detailed surface recovery from just one image. Furthermore, we design a compact optical tactile sensor to validate our approach. Experiments on both synthetic and real-world datasets demonstrate that our method achieves accurate and robust surface reconstruction.


Abstract:Named entity recognition is a challenging task in Natural Language Processing, especially for informal and noisy social media text. Chinese word boundaries are also entity boundaries, therefore, named entity recognition for Chinese text can benefit from word boundary detection, outputted by Chinese word segmentation. Yet Chinese word segmentation poses its own difficulty because it is influenced by several factors, e.g., segmentation criteria, employed algorithm, etc. Dealt improperly, it may generate a cascading failure to the quality of named entity recognition followed. In this paper we integrate a boundary assembling method with the state-of-the-art deep neural network model, and incorporate the updated word boundary information into a conditional random field model for named entity recognition. Our method shows a 2% absolute improvement over previous state-of-the-art results.