Abstract:Color photometric stereo enables single-shot surface reconstruction, extending conventional photometric stereo that requires multiple images of a static scene under varying illumination to dynamic scenarios. However, most existing approaches assume ideal distant lighting and Lambertian reflectance, leaving more practical near-light conditions and non-Lambertian surfaces underexplored. To overcome this limitation, we propose a framework that leverages neural implicit representations for depth and BRDF modeling under the assumption of mono-chromaticity (uniform chromaticity and homogeneous material), which alleviates the inherent ill-posedness of color photometric stereo and allows for detailed surface recovery from just one image. Furthermore, we design a compact optical tactile sensor to validate our approach. Experiments on both synthetic and real-world datasets demonstrate that our method achieves accurate and robust surface reconstruction.


Abstract:Named entity recognition is a challenging task in Natural Language Processing, especially for informal and noisy social media text. Chinese word boundaries are also entity boundaries, therefore, named entity recognition for Chinese text can benefit from word boundary detection, outputted by Chinese word segmentation. Yet Chinese word segmentation poses its own difficulty because it is influenced by several factors, e.g., segmentation criteria, employed algorithm, etc. Dealt improperly, it may generate a cascading failure to the quality of named entity recognition followed. In this paper we integrate a boundary assembling method with the state-of-the-art deep neural network model, and incorporate the updated word boundary information into a conditional random field model for named entity recognition. Our method shows a 2% absolute improvement over previous state-of-the-art results.