Abstract:This paper introduces a large-scale, high-precision LiDAR-Inertial Odometry (LIO) dataset, aiming to address the insufficient validation of LIO systems in complex real-world scenarios in existing research. The dataset covers four diverse real-world environments spanning 60,000 to 750,000 square meters, collected using a custom backpack-mounted platform equipped with multi-beam LiDAR, an industrial-grade IMU, and RTK-GNSS modules. The dataset includes long trajectories, complex scenes, and high-precision ground truth, generated by fusing SLAM-based optimization with RTK-GNSS anchoring, and validated for trajectory accuracy through the integration of oblique photogrammetry and RTK-GNSS. This dataset provides a comprehensive benchmark for evaluating the generalization ability of LIO systems in practical high-precision mapping scenarios.
Abstract:Scene view synthesis, which generates novel views from limited perspectives, is increasingly vital for applications like virtual reality, augmented reality, and robotics. Unlike object-based tasks, such as generating 360{\deg} views of a car, scene view synthesis handles entire environments where non-uniform observations pose unique challenges for stable rendering quality. To address this issue, we propose a novel approach: renderability field-guided gaussian splatting (RF-GS). This method quantifies input inhomogeneity through a renderability field, guiding pseudo-view sampling to enhanced visual consistency. To ensure the quality of wide-baseline pseudo-views, we train an image restoration model to map point projections to visible-light styles. Additionally, our validated hybrid data optimization strategy effectively fuses information of pseudo-view angles and source view textures. Comparative experiments on simulated and real-world data show that our method outperforms existing approaches in rendering stability.