This paper introduces a large-scale, high-precision LiDAR-Inertial Odometry (LIO) dataset, aiming to address the insufficient validation of LIO systems in complex real-world scenarios in existing research. The dataset covers four diverse real-world environments spanning 60,000 to 750,000 square meters, collected using a custom backpack-mounted platform equipped with multi-beam LiDAR, an industrial-grade IMU, and RTK-GNSS modules. The dataset includes long trajectories, complex scenes, and high-precision ground truth, generated by fusing SLAM-based optimization with RTK-GNSS anchoring, and validated for trajectory accuracy through the integration of oblique photogrammetry and RTK-GNSS. This dataset provides a comprehensive benchmark for evaluating the generalization ability of LIO systems in practical high-precision mapping scenarios.