Abstract:Partially Relevant Video Retrieval (PRVR) aims to retrieve the target video that is partially relevant to the text query. The primary challenge in PRVR arises from the semantic asymmetry between textual and visual modalities, as videos often contain substantial content irrelevant to the query. Existing methods coarsely align paired videos and text queries to construct the semantic space, neglecting the critical cross-modal dual nature inherent in this task: inter-sample correlation and intra-sample redundancy. To this end, we propose a novel PRVR framework to systematically exploit these two characteristics. Our framework consists of three core modules. First, the Inter Correlation Enhancement (ICE) module captures inter-sample correlation by identifying semantically similar yet unpaired text queries and video moments, combining them to form pseudo-positive pairs for more robust semantic space construction. Second, the Intra Redundancy Mining (IRM) module mitigates intra-sample redundancy by mining redundant video moment features and treating them as hard negative samples, thereby encouraging the model to learn more discriminative representations. Finally, to reinforce these modules, we introduce the Temporal Coherence Prediction (TCP) module, which enhances feature discrimination by training the model to predict the original temporal order of randomly shuffled video frames and moments. Extensive experiments on three datasets demonstrate the superiority of our approach compared to previous methods, achieving state-of-the-art results.
Abstract:Monocular 3D clothed human reconstruction aims to create a complete 3D avatar from a single image. To tackle the human geometry lacking in one RGB image, current methods typically resort to a preceding model for an explicit geometric representation. For the reconstruction itself, focus is on modeling both it and the input image. This routine is constrained by the preceding model, and overlooks the integrity of the reconstruction task. To address this, this paper introduces a novel paradigm that treats human reconstruction as a holistic process, utilizing an end-to-end network for direct prediction from 2D image to 3D avatar, eliminating any explicit intermediate geometry display. Based on this, we further propose a novel reconstruction framework consisting of two core components: the Anatomy Shaping Extraction module, which captures implicit shape features taking into account the specialty of human anatomy, and the Twins Negotiating Reconstruction U-Net, which enhances reconstruction through feature interaction between two U-Nets of different modalities. Moreover, we propose a Comic Data Augmentation strategy and construct 15k+ 3D human scans to bolster model performance in more complex case input. Extensive experiments on two test sets and many in-the-wild cases show the superiority of our method over SOTA methods. Our demos can be found in : https://e2e3dgsrecon.github.io/e2e3dgsrecon/.
Abstract:Generating multi-view human images from a single view is a complex and significant challenge. Although recent advancements in multi-view object generation have shown impressive results with diffusion models, novel view synthesis for humans remains constrained by the limited availability of 3D human datasets. Consequently, many existing models struggle to produce realistic human body shapes or capture fine-grained facial details accurately. To address these issues, we propose an innovative framework that leverages transferred body and facial representations for multi-view human synthesis. Specifically, we use a single-view model pretrained on a large-scale human dataset to develop a multi-view body representation, aiming to extend the 2D knowledge of the single-view model to a multi-view diffusion model. Additionally, to enhance the model's detail restoration capability, we integrate transferred multimodal facial features into our trained human diffusion model. Experimental evaluations on benchmark datasets demonstrate that our approach outperforms the current state-of-the-art methods, achieving superior performance in multi-view human synthesis.
Abstract:This paper investigates the research task of reconstructing the 3D clothed human body from a monocular image. Due to the inherent ambiguity of single-view input, existing approaches leverage pre-trained SMPL(-X) estimation models or generative models to provide auxiliary information for human reconstruction. However, these methods capture only the general human body geometry and overlook specific geometric details, leading to inaccurate skeleton reconstruction, incorrect joint positions, and unclear cloth wrinkles. In response to these issues, we propose a multi-level geometry learning framework. Technically, we design three key components: skeleton-level enhancement, joint-level augmentation, and wrinkle-level refinement modules. Specifically, we effectively integrate the projected 3D Fourier features into a Gaussian reconstruction model, introduce perturbations to improve joint depth estimation during training, and refine the human coarse wrinkles by resembling the de-noising process of diffusion model. Extensive quantitative and qualitative experiments on two out-of-distribution test sets show the superior performance of our approach compared to state-of-the-art (SOTA) methods.