Alert button
Picture for Javier de la Rosa

Javier de la Rosa

Alert button

Boosting Norwegian Automatic Speech Recognition

Jul 04, 2023
Javier de la Rosa, Rolv-Arild Braaten, Per Egil Kummervold, Freddy Wetjen, Svein Arne Brygfjeld

Figure 1 for Boosting Norwegian Automatic Speech Recognition
Figure 2 for Boosting Norwegian Automatic Speech Recognition
Figure 3 for Boosting Norwegian Automatic Speech Recognition
Figure 4 for Boosting Norwegian Automatic Speech Recognition

In this paper, we present several baselines for automatic speech recognition (ASR) models for the two official written languages in Norway: Bokm{\aa}l and Nynorsk. We compare the performance of models of varying sizes and pre-training approaches on multiple Norwegian speech datasets. Additionally, we measure the performance of these models against previous state-of-the-art ASR models, as well as on out-of-domain datasets. We improve the state of the art on the Norwegian Parliamentary Speech Corpus (NPSC) from a word error rate (WER) of 17.10\% to 7.60\%, with models achieving 5.81\% for Bokm{\aa}l and 11.54\% for Nynorsk. We also discuss the challenges and potential solutions for further improving ASR models for Norwegian.

* 2023. Boosting Norwegian Automatic Speech Recognition. In Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa), pages 555--564, T\'orshavn, Faroe Islands. University of Tartu Library  
* 10 pages, 10 figures. Published as Proceedings NoDaLiDa 2023, pages 555--564 
Viaarxiv icon

ALBERTI, a Multilingual Domain Specific Language Model for Poetry Analysis

Jul 03, 2023
Javier de la Rosa, Álvaro Pérez Pozo, Salvador Ros, Elena González-Blanco

Figure 1 for ALBERTI, a Multilingual Domain Specific Language Model for Poetry Analysis
Figure 2 for ALBERTI, a Multilingual Domain Specific Language Model for Poetry Analysis
Figure 3 for ALBERTI, a Multilingual Domain Specific Language Model for Poetry Analysis
Figure 4 for ALBERTI, a Multilingual Domain Specific Language Model for Poetry Analysis

The computational analysis of poetry is limited by the scarcity of tools to automatically analyze and scan poems. In a multilingual settings, the problem is exacerbated as scansion and rhyme systems only exist for individual languages, making comparative studies very challenging and time consuming. In this work, we present \textsc{Alberti}, the first multilingual pre-trained large language model for poetry. Through domain-specific pre-training (DSP), we further trained multilingual BERT on a corpus of over 12 million verses from 12 languages. We evaluated its performance on two structural poetry tasks: Spanish stanza type classification, and metrical pattern prediction for Spanish, English and German. In both cases, \textsc{Alberti} outperforms multilingual BERT and other transformers-based models of similar sizes, and even achieves state-of-the-art results for German when compared to rule-based systems, demonstrating the feasibility and effectiveness of DSP in the poetry domain.

* Accepted for publication at SEPLN 2023: 39th International Conference of the Spanish Society for Natural Language Processing 
Viaarxiv icon

The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset

Mar 07, 2023
Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral, Teven Le Scao, Leandro Von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen, Jörg Frohberg, Mario Šaško, Quentin Lhoest, Angelina McMillan-Major, Gerard Dupont, Stella Biderman, Anna Rogers, Loubna Ben allal, Francesco De Toni, Giada Pistilli, Olivier Nguyen, Somaieh Nikpoor, Maraim Masoud, Pierre Colombo, Javier de la Rosa, Paulo Villegas, Tristan Thrush, Shayne Longpre, Sebastian Nagel, Leon Weber, Manuel Muñoz, Jian Zhu, Daniel Van Strien, Zaid Alyafeai, Khalid Almubarak, Minh Chien Vu, Itziar Gonzalez-Dios, Aitor Soroa, Kyle Lo, Manan Dey, Pedro Ortiz Suarez, Aaron Gokaslan, Shamik Bose, David Adelani, Long Phan, Hieu Tran, Ian Yu, Suhas Pai, Jenny Chim, Violette Lepercq, Suzana Ilic, Margaret Mitchell, Sasha Alexandra Luccioni, Yacine Jernite

Figure 1 for The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset
Figure 2 for The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset
Figure 3 for The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset
Figure 4 for The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset

As language models grow ever larger, the need for large-scale high-quality text datasets has never been more pressing, especially in multilingual settings. The BigScience workshop, a 1-year international and multidisciplinary initiative, was formed with the goal of researching and training large language models as a values-driven undertaking, putting issues of ethics, harm, and governance in the foreground. This paper documents the data creation and curation efforts undertaken by BigScience to assemble the Responsible Open-science Open-collaboration Text Sources (ROOTS) corpus, a 1.6TB dataset spanning 59 languages that was used to train the 176-billion-parameter BigScience Large Open-science Open-access Multilingual (BLOOM) language model. We further release a large initial subset of the corpus and analyses thereof, and hope to empower large-scale monolingual and multilingual modeling projects with both the data and the processing tools, as well as stimulate research around this large multilingual corpus.

* NeurIPS 2022, Datasets and Benchmarks Track 
Viaarxiv icon

BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

Nov 09, 2022
Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, Dragomir Radev, Eduardo González Ponferrada, Efrat Levkovizh, Ethan Kim, Eyal Bar Natan, Francesco De Toni, Gérard Dupont, Germán Kruszewski, Giada Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran, Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg, Joseph Tobing, Joydeep Bhattacharjee, Khalid Almubarak, Kimbo Chen, Kyle Lo, Leandro Von Werra, Leon Weber, Long Phan, Loubna Ben allal, Ludovic Tanguy, Manan Dey, Manuel Romero Muñoz, Maraim Masoud, María Grandury, Mario Šaško, Max Huang, Maximin Coavoux, Mayank Singh, Mike Tian-Jian Jiang, Minh Chien Vu, Mohammad A. Jauhar, Mustafa Ghaleb, Nishant Subramani, Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen, Omar Espejel, Ona de Gibert, Paulo Villegas, Peter Henderson, Pierre Colombo, Priscilla Amuok, Quentin Lhoest, Rheza Harliman, Rishi Bommasani, Roberto Luis López, Rui Ribeiro, Salomey Osei, Sampo Pyysalo, Sebastian Nagel, Shamik Bose, Shamsuddeen Hassan Muhammad, Shanya Sharma, Shayne Longpre, Somaieh Nikpoor, Stanislav Silberberg, Suhas Pai, Sydney Zink, Tiago Timponi Torrent, Timo Schick, Tristan Thrush, Valentin Danchev, Vassilina Nikoulina, Veronika Laippala, Violette Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Talat, Arun Raja, Benjamin Heinzerling, Chenglei Si, Elizabeth Salesky, Sabrina J. Mielke, Wilson Y. Lee, Abheesht Sharma, Andrea Santilli, Antoine Chaffin, Arnaud Stiegler, Debajyoti Datta, Eliza Szczechla, Gunjan Chhablani, Han Wang, Harshit Pandey, Hendrik Strobelt, Jason Alan Fries, Jos Rozen, Leo Gao, Lintang Sutawika, M Saiful Bari, Maged S. Al-shaibani, Matteo Manica, Nihal Nayak, Ryan Teehan, Samuel Albanie, Sheng Shen, Srulik Ben-David, Stephen H. Bach, Taewoon Kim, Tali Bers, Thibault Fevry, Trishala Neeraj, Urmish Thakker, Vikas Raunak, Xiangru Tang, Zheng-Xin Yong, Zhiqing Sun, Shaked Brody, Yallow Uri, Hadar Tojarieh, Adam Roberts, Hyung Won Chung, Jaesung Tae, Jason Phang, Ofir Press, Conglong Li, Deepak Narayanan, Hatim Bourfoune, Jared Casper, Jeff Rasley, Max Ryabinin, Mayank Mishra, Minjia Zhang, Mohammad Shoeybi, Myriam Peyrounette, Nicolas Patry, Nouamane Tazi, Omar Sanseviero, Patrick von Platen, Pierre Cornette, Pierre François Lavallée, Rémi Lacroix, Samyam Rajbhandari, Sanchit Gandhi, Shaden Smith, Stéphane Requena, Suraj Patil, Tim Dettmers, Ahmed Baruwa, Amanpreet Singh, Anastasia Cheveleva, Anne-Laure Ligozat, Arjun Subramonian, Aurélie Névéol, Charles Lovering, Dan Garrette, Deepak Tunuguntla, Ehud Reiter, Ekaterina Taktasheva, Ekaterina Voloshina, Eli Bogdanov, Genta Indra Winata, Hailey Schoelkopf, Jan-Christoph Kalo, Jekaterina Novikova, Jessica Zosa Forde, Jordan Clive, Jungo Kasai, Ken Kawamura, Liam Hazan, Marine Carpuat, Miruna Clinciu, Najoung Kim, Newton Cheng, Oleg Serikov, Omer Antverg, Oskar van der Wal, Rui Zhang, Ruochen Zhang, Sebastian Gehrmann, Shani Pais, Tatiana Shavrina, Thomas Scialom, Tian Yun, Tomasz Limisiewicz, Verena Rieser, Vitaly Protasov, Vladislav Mikhailov, Yada Pruksachatkun, Yonatan Belinkov, Zachary Bamberger, Zdeněk Kasner, Alice Rueda, Amanda Pestana, Amir Feizpour, Ammar Khan, Amy Faranak, Ana Santos, Anthony Hevia, Antigona Unldreaj, Arash Aghagol, Arezoo Abdollahi, Aycha Tammour, Azadeh HajiHosseini, Bahareh Behroozi, Benjamin Ajibade, Bharat Saxena, Carlos Muñoz Ferrandis, Danish Contractor, David Lansky, Davis David, Douwe Kiela, Duong A. Nguyen, Edward Tan, Emi Baylor, Ezinwanne Ozoani, Fatima Mirza, Frankline Ononiwu, Habib Rezanejad, Hessie Jones, Indrani Bhattacharya, Irene Solaiman, Irina Sedenko, Isar Nejadgholi, Jesse Passmore, Josh Seltzer, Julio Bonis Sanz, Karen Fort, Livia Dutra, Mairon Samagaio, Maraim Elbadri, Margot Mieskes, Marissa Gerchick, Martha Akinlolu, Michael McKenna, Mike Qiu, Muhammed Ghauri, Mykola Burynok, Nafis Abrar, Nazneen Rajani, Nour Elkott, Nour Fahmy, Olanrewaju Samuel, Ran An, Rasmus Kromann, Ryan Hao, Samira Alizadeh, Sarmad Shubber, Silas Wang, Sourav Roy, Sylvain Viguier, Thanh Le, Tobi Oyebade, Trieu Le, Yoyo Yang, Zach Nguyen, Abhinav Ramesh Kashyap, Alfredo Palasciano, Alison Callahan, Anima Shukla, Antonio Miranda-Escalada, Ayush Singh, Benjamin Beilharz, Bo Wang, Caio Brito, Chenxi Zhou, Chirag Jain, Chuxin Xu, Clémentine Fourrier, Daniel León Periñán, Daniel Molano, Dian Yu, Enrique Manjavacas, Fabio Barth, Florian Fuhrimann, Gabriel Altay, Giyaseddin Bayrak, Gully Burns, Helena U. Vrabec, Imane Bello, Ishani Dash, Jihyun Kang, John Giorgi, Jonas Golde, Jose David Posada, Karthik Rangasai Sivaraman, Lokesh Bulchandani, Lu Liu, Luisa Shinzato, Madeleine Hahn de Bykhovetz, Maiko Takeuchi, Marc Pàmies, Maria A Castillo, Marianna Nezhurina, Mario Sänger, Matthias Samwald, Michael Cullan, Michael Weinberg, Michiel De Wolf, Mina Mihaljcic, Minna Liu, Moritz Freidank, Myungsun Kang, Natasha Seelam, Nathan Dahlberg, Nicholas Michio Broad, Nikolaus Muellner, Pascale Fung, Patrick Haller, Ramya Chandrasekhar, Renata Eisenberg, Robert Martin, Rodrigo Canalli, Rosaline Su, Ruisi Su, Samuel Cahyawijaya, Samuele Garda, Shlok S Deshmukh, Shubhanshu Mishra, Sid Kiblawi, Simon Ott, Sinee Sang-aroonsiri, Srishti Kumar, Stefan Schweter, Sushil Bharati, Tanmay Laud, Théo Gigant, Tomoya Kainuma, Wojciech Kusa, Yanis Labrak, Yash Shailesh Bajaj, Yash Venkatraman, Yifan Xu, Yingxin Xu, Yu Xu, Zhe Tan, Zhongli Xie, Zifan Ye, Mathilde Bras, Younes Belkada, Thomas Wolf

Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.

Viaarxiv icon

BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling

Jul 14, 2022
Javier de la Rosa, Eduardo G. Ponferrada, Paulo Villegas, Pablo Gonzalez de Prado Salas, Manu Romero, Marıa Grandury

Figure 1 for BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling
Figure 2 for BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling
Figure 3 for BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling
Figure 4 for BERTIN: Efficient Pre-Training of a Spanish Language Model using Perplexity Sampling

The pre-training of large language models usually requires massive amounts of resources, both in terms of computation and data. Frequently used web sources such as Common Crawl might contain enough noise to make this pre-training sub-optimal. In this work, we experiment with different sampling methods from the Spanish version of mC4, and present a novel data-centric technique which we name $\textit{perplexity sampling}$ that enables the pre-training of language models in roughly half the amount of steps and using one fifth of the data. The resulting models are comparable to the current state-of-the-art, and even achieve better results for certain tasks. Our work is proof of the versatility of Transformers, and paves the way for small teams to train their models on a limited budget. Our models are available at this $\href{https://huggingface.co/bertin-project}{URL}$.

* Procesamiento del Lenguaje Natural, 68 (2022): 13-23  
* Published at Procesamiento del Lenguaje Natural 
Viaarxiv icon

Entities, Dates, and Languages: Zero-Shot on Historical Texts with T0

Apr 11, 2022
Francesco De Toni, Christopher Akiki, Javier de la Rosa, Clémentine Fourrier, Enrique Manjavacas, Stefan Schweter, Daniel van Strien

Figure 1 for Entities, Dates, and Languages: Zero-Shot on Historical Texts with T0
Figure 2 for Entities, Dates, and Languages: Zero-Shot on Historical Texts with T0
Figure 3 for Entities, Dates, and Languages: Zero-Shot on Historical Texts with T0
Figure 4 for Entities, Dates, and Languages: Zero-Shot on Historical Texts with T0

In this work, we explore whether the recently demonstrated zero-shot abilities of the T0 model extend to Named Entity Recognition for out-of-distribution languages and time periods. Using a historical newspaper corpus in 3 languages as test-bed, we use prompts to extract possible named entities. Our results show that a naive approach for prompt-based zero-shot multilingual Named Entity Recognition is error-prone, but highlights the potential of such an approach for historical languages lacking labeled datasets. Moreover, we also find that T0-like models can be probed to predict the publication date and language of a document, which could be very relevant for the study of historical texts.

Viaarxiv icon

The futility of STILTs for the classification of lexical borrowings in Spanish

Sep 17, 2021
Javier de la Rosa

Figure 1 for The futility of STILTs for the classification of lexical borrowings in Spanish
Figure 2 for The futility of STILTs for the classification of lexical borrowings in Spanish
Figure 3 for The futility of STILTs for the classification of lexical borrowings in Spanish
Figure 4 for The futility of STILTs for the classification of lexical borrowings in Spanish

The first edition of the IberLEF 2021 shared task on automatic detection of borrowings (ADoBo) focused on detecting lexical borrowings that appeared in the Spanish press and that have recently been imported into the Spanish language. In this work, we tested supplementary training on intermediate labeled-data tasks (STILTs) from part of speech (POS), named entity recognition (NER), code-switching, and language identification approaches to the classification of borrowings at the token level using existing pre-trained transformer-based language models. Our extensive experimental results suggest that STILTs do not provide any improvement over direct fine-tuning of multilingual models. However, multilingual models trained on small subsets of languages perform reasonably better than multilingual BERT but not as good as multilingual RoBERTa for the given dataset.

* ADoBo 2021 Shared Task IberLEFT@SEPLN, CEUR Workshop Proceedings (Vol. 2943, pp. 947-955)  
Viaarxiv icon

Operationalizing a National Digital Library: The Case for a Norwegian Transformer Model

Apr 19, 2021
Per E Kummervold, Javier de la Rosa, Freddy Wetjen, Svein Arne Brygfjeld

Figure 1 for Operationalizing a National Digital Library: The Case for a Norwegian Transformer Model
Figure 2 for Operationalizing a National Digital Library: The Case for a Norwegian Transformer Model
Figure 3 for Operationalizing a National Digital Library: The Case for a Norwegian Transformer Model
Figure 4 for Operationalizing a National Digital Library: The Case for a Norwegian Transformer Model

In this work, we show the process of building a large-scale training set from digital and digitized collections at a national library. The resulting Bidirectional Encoder Representations from Transformers (BERT)-based language model for Norwegian outperforms multilingual BERT (mBERT) models in several token and sequence classification tasks for both Norwegian Bokm{\aa}l and Norwegian Nynorsk. Our model also improves the mBERT performance for other languages present in the corpus such as English, Swedish, and Danish. For languages not included in the corpus, the weights degrade moderately while keeping strong multilingual properties. Therefore, we show that building high-quality models within a memory institution using somewhat noisy optical character recognition (OCR) content is feasible, and we hope to pave the way for other memory institutions to follow.

* Accepted to NoDaLiDa 2021 
Viaarxiv icon

Predicting metrical patterns in Spanish poetry with language models

Nov 18, 2020
Javier de la Rosa, Salvador Ros, Elena González-Blanco

Figure 1 for Predicting metrical patterns in Spanish poetry with language models

In this paper, we compare automated metrical pattern identification systems available for Spanish against extensive experiments done by fine-tuning language models trained on the same task. Despite being initially conceived as a model suitable for semantic tasks, our results suggest that BERT-based models retain enough structural information to perform reasonably well for Spanish scansion.

* LXAI Workshop @ NeurIPS 2020 
Viaarxiv icon

The Life of Lazarillo de Tormes and of His Machine Learning Adversities

Nov 16, 2016
Javier de la Rosa, Juan-Luis Suárez

Figure 1 for The Life of Lazarillo de Tormes and of His Machine Learning Adversities
Figure 2 for The Life of Lazarillo de Tormes and of His Machine Learning Adversities
Figure 3 for The Life of Lazarillo de Tormes and of His Machine Learning Adversities
Figure 4 for The Life of Lazarillo de Tormes and of His Machine Learning Adversities

Summit work of the Spanish Golden Age and forefather of the so-called picaresque novel, The Life of Lazarillo de Tormes and of His Fortunes and Adversities still remains an anonymous text. Although distinguished scholars have tried to attribute it to different authors based on a variety of criteria, a consensus has yet to be reached. The list of candidates is long and not all of them enjoy the same support within the scholarly community. Analyzing their works from a data-driven perspective and applying machine learning techniques for style and text fingerprinting, we shed light on the authorship of the Lazarillo. As in a state-of-the-art survey, we discuss the methods used and how they perform in our specific case. According to our methodology, the most likely author seems to be Juan Arce de Ot\'alora, closely followed by Alfonso de Vald\'es. The method states that not certain attribution can be made with the given corpus.

* Lemir: Revista de Literatura Espa\~nola Medieval y del Renacimiento, 20 (2016)  
* 66 pages, 11 figures 
Viaarxiv icon