Abstract:Large Vision-Language Models (LVLMs) hold significant promise for medical applications, yet their deployment is often constrained by insufficient alignment and reliability. While Direct Preference Optimization (DPO) has emerged as a potent framework for refining model responses, its efficacy in high-stakes medical contexts remains underexplored, lacking the rigorous empirical groundwork necessary to guide future methodological advances. To bridge this gap, we present the first comprehensive examination of diverse DPO variants within the medical domain, evaluating nine distinct formulations across two medical LVLMs: LLaVA-Med and HuatuoGPT-Vision. Our results reveal several critical limitations: current DPO approaches often yield inconsistent gains over supervised fine-tuning, with their efficacy varying significantly across different tasks and backbones. Furthermore, they frequently fail to resolve fundamental visual misinterpretation errors. Building on these insights, we present a targeted preference construction strategy as a proof-of-concept that explicitly addresses visual misinterpretation errors frequently observed in existing DPO models. This design yields a 3.6% improvement over the strongest existing DPO baseline on visual question-answering tasks. To support future research, we release our complete framework, including all training data, model checkpoints, and our codebase at https://github.com/dmis-lab/med-vlm-dpo.
Abstract:Large language models (LLMs) are transforming the landscape of medicine, yet two fundamental challenges persist: keeping up with rapidly evolving medical knowledge and providing verifiable, evidence-grounded reasoning. Retrieval-augmented generation (RAG) has been widely adopted to address these limitations by supplementing model outputs with retrieved evidence. However, whether RAG reliably achieves these goals remains unclear. Here, we present the most comprehensive expert evaluation of RAG in medicine to date. Eighteen medical experts contributed a total of 80,502 annotations, assessing 800 model outputs generated by GPT-4o and Llama-3.1-8B across 200 real-world patient and USMLE-style queries. We systematically decomposed the RAG pipeline into three components: (i) evidence retrieval (relevance of retrieved passages), (ii) evidence selection (accuracy of evidence usage), and (iii) response generation (factuality and completeness of outputs). Contrary to expectation, standard RAG often degraded performance: only 22% of top-16 passages were relevant, evidence selection remained weak (precision 41-43%, recall 27-49%), and factuality and completeness dropped by up to 6% and 5%, respectively, compared with non-RAG variants. Retrieval and evidence selection remain key failure points for the model, contributing to the overall performance drop. We further show that simple yet effective strategies, including evidence filtering and query reformulation, substantially mitigate these issues, improving performance on MedMCQA and MedXpertQA by up to 12% and 8.2%, respectively. These findings call for re-examining RAG's role in medicine and highlight the importance of stage-aware evaluation and deliberate system design for reliable medical LLM applications.
Abstract:Large language models have shown promise in clinical decision making, but current approaches struggle to localize and correct errors at specific steps of the reasoning process. This limitation is critical in medicine, where identifying and addressing reasoning errors is essential for accurate diagnosis and effective patient care. We introduce Med-PRM, a process reward modeling framework that leverages retrieval-augmented generation to verify each reasoning step against established medical knowledge bases. By verifying intermediate reasoning steps with evidence retrieved from clinical guidelines and literature, our model can precisely assess the reasoning quality in a fine-grained manner. Evaluations on five medical QA benchmarks and two open-ended diagnostic tasks demonstrate that Med-PRM achieves state-of-the-art performance, with improving the performance of base models by up to 13.50% using Med-PRM. Moreover, we demonstrate the generality of Med-PRM by integrating it in a plug-and-play fashion with strong policy models such as Meerkat, achieving over 80\% accuracy on MedQA for the first time using small-scale models of 8 billion parameters. Our code and data are available at: https://med-prm.github.io/