Abstract:Analog quantum simulators provide access to many-body dynamics beyond the reach of classical computation. However, extracting physical insights from experimental data is often hindered by measurement noise, limited observables, and incomplete knowledge of the underlying microscopic model. Here, we develop a machine learning approach based on a variational autoencoder (VAE) to analyze interference measurements of tunnel-coupled one-dimensional Bose gases, which realize the sine-Gordon quantum field theory. Trained in an unsupervised manner, the VAE learns a minimal latent representation that strongly correlates with the equilibrium control parameter of the system. Applied to non-equilibrium protocols, the latent space uncovers signatures of frozen-in solitons following rapid cooling, and reveals anomalous post-quench dynamics not captured by conventional correlation-based methods. These results demonstrate that generative models can extract physically interpretable variables directly from noisy and sparse experimental data, providing complementary probes of equilibrium and non-equilibrium physics in quantum simulators. More broadly, our work highlights how machine learning can supplement established field-theoretical techniques, paving the way for scalable, data-driven discovery in quantum many-body systems.
Abstract:This white paper discusses and explores the various points of intersection between quantum computing and artificial intelligence (AI). It describes how quantum computing could support the development of innovative AI solutions. It also examines use cases of classical AI that can empower research and development in quantum technologies, with a focus on quantum computing and quantum sensing. The purpose of this white paper is to provide a long-term research agenda aimed at addressing foundational questions about how AI and quantum computing interact and benefit one another. It concludes with a set of recommendations and challenges, including how to orchestrate the proposed theoretical work, align quantum AI developments with quantum hardware roadmaps, estimate both classical and quantum resources - especially with the goal of mitigating and optimizing energy consumption - advance this emerging hybrid software engineering discipline, and enhance European industrial competitiveness while considering societal implications.