Alert button
Picture for Ismail Yunus Akhalwaya

Ismail Yunus Akhalwaya

Alert button

Towards Quantum Advantage on Noisy Quantum Computers

Sep 27, 2022
Ismail Yunus Akhalwaya, Shashanka Ubaru, Kenneth L. Clarkson, Mark S. Squillante, Vishnu Jejjala, Yang-Hui He, Kugendran Naidoo, Vasileios Kalantzis, Lior Horesh

Figure 1 for Towards Quantum Advantage on Noisy Quantum Computers
Figure 2 for Towards Quantum Advantage on Noisy Quantum Computers
Figure 3 for Towards Quantum Advantage on Noisy Quantum Computers
Figure 4 for Towards Quantum Advantage on Noisy Quantum Computers

Topological data analysis (TDA) is a powerful technique for extracting complex and valuable shape-related summaries of high-dimensional data. However, the computational demands of classical TDA algorithms are exorbitant, and quickly become impractical for high-order characteristics. Quantum computing promises exponential speedup for certain problems. Yet, many existing quantum algorithms with notable asymptotic speedups require a degree of fault tolerance that is currently unavailable. In this paper, we present NISQ-TDA, the first fully implemented end-to-end quantum machine learning algorithm needing only a linear circuit-depth, that is applicable to non-handcrafted high-dimensional classical data, with potential speedup under stringent conditions. The algorithm neither suffers from the data-loading problem nor does it need to store the input data on the quantum computer explicitly. Our approach includes three key innovations: (a) an efficient realization of the full boundary operator as a sum of Pauli operators; (b) a quantum rejection sampling and projection approach to restrict a uniform superposition to the simplices of the desired order in the complex; and (c) a stochastic rank estimation method to estimate the topological features in the form of approximate Betti numbers. We present theoretical results that establish additive error guarantees for NISQ-TDA, and the circuit and computational time and depth complexities for exponentially scaled output estimates, up to the error tolerance. The algorithm was successfully executed on quantum computing devices, as well as on noisy quantum simulators, applied to small datasets. Preliminary empirical results suggest that the algorithm is robust to noise.

* This paper is a follow up to arXiv:2108.02811 with additional results 
Viaarxiv icon

Exponential advantage on noisy quantum computers

Sep 19, 2022
Ismail Yunus Akhalwaya, Shashanka Ubaru, Kenneth L. Clarkson, Mark S. Squillante, Vishnu Jejjala, Yang-Hui He, Kugendran Naidoo, Vasileios Kalantzis, Lior Horesh

Figure 1 for Exponential advantage on noisy quantum computers
Figure 2 for Exponential advantage on noisy quantum computers
Figure 3 for Exponential advantage on noisy quantum computers
Figure 4 for Exponential advantage on noisy quantum computers

Quantum computing offers the potential of exponential speedup over classical computation for certain problems. However, many of the existing algorithms with provable speedups require currently unavailable fault-tolerant quantum computers. We present NISQ-TDA, the first fully implemented quantum machine learning algorithm with provable exponential speedup on arbitrary classical (non-handcrafted) data and needing only a linear circuit depth. We report the successful execution of our NISQ-TDA algorithm, applied to small datasets run on quantum computing devices, as well as on noisy quantum simulators. We empirically confirm that the algorithm is robust to noise, and provide target depths and noise levels to realize near-term, non-fault-tolerant quantum advantage on real-world problems. Our unique data-loading projection method is the main source of noise robustness, introducing a new self-correcting data-loading approach.

* arXiv admin note: substantial text overlap with arXiv:2108.02811 
Viaarxiv icon

Quantum Topological Data Analysis with Linear Depth and Exponential Speedup

Aug 05, 2021
Shashanka Ubaru, Ismail Yunus Akhalwaya, Mark S. Squillante, Kenneth L. Clarkson, Lior Horesh

Figure 1 for Quantum Topological Data Analysis with Linear Depth and Exponential Speedup
Figure 2 for Quantum Topological Data Analysis with Linear Depth and Exponential Speedup
Figure 3 for Quantum Topological Data Analysis with Linear Depth and Exponential Speedup

Quantum computing offers the potential of exponential speedups for certain classical computations. Over the last decade, many quantum machine learning (QML) algorithms have been proposed as candidates for such exponential improvements. However, two issues unravel the hope of exponential speedup for some of these QML algorithms: the data-loading problem and, more recently, the stunning dequantization results of Tang et al. A third issue, namely the fault-tolerance requirements of most QML algorithms, has further hindered their practical realization. The quantum topological data analysis (QTDA) algorithm of Lloyd, Garnerone and Zanardi was one of the first QML algorithms that convincingly offered an expected exponential speedup. From the outset, it did not suffer from the data-loading problem. A recent result has also shown that the generalized problem solved by this algorithm is likely classically intractable, and would therefore be immune to any dequantization efforts. However, the QTDA algorithm of Lloyd et~al. has a time complexity of $O(n^4/(\epsilon^2 \delta))$ (where $n$ is the number of data points, $\epsilon$ is the error tolerance, and $\delta$ is the smallest nonzero eigenvalue of the restricted Laplacian) and requires fault-tolerant quantum computing, which has not yet been achieved. In this paper, we completely overhaul the QTDA algorithm to achieve an improved exponential speedup and depth complexity of $O(n\log(1/(\delta\epsilon)))$. Our approach includes three key innovations: (a) an efficient realization of the combinatorial Laplacian as a sum of Pauli operators; (b) a quantum rejection sampling approach to restrict the superposition to the simplices in the complex; and (c) a stochastic rank estimation method to estimate the Betti numbers. We present a theoretical error analysis, and the circuit and computational time and depth complexities for Betti number estimation.

* 27 pages 
Viaarxiv icon

Logical Neural Networks

Jun 23, 2020
Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo Makondo, Ismail Yunus Akhalwaya, Haifeng Qian, Ronald Fagin, Francisco Barahona, Udit Sharma, Shajith Ikbal, Hima Karanam, Sumit Neelam, Ankita Likhyani, Santosh Srivastava

Figure 1 for Logical Neural Networks
Figure 2 for Logical Neural Networks
Figure 3 for Logical Neural Networks
Figure 4 for Logical Neural Networks

We propose a novel framework seamlessly providing key properties of both neural nets (learning) and symbolic logic (knowledge and reasoning). Every neuron has a meaning as a component of a formula in a weighted real-valued logic, yielding a highly intepretable disentangled representation. Inference is omnidirectional rather than focused on predefined target variables, and corresponds to logical reasoning, including classical first-order logic theorem proving as a special case. The model is end-to-end differentiable, and learning minimizes a novel loss function capturing logical contradiction, yielding resilience to inconsistent knowledge. It also enables the open-world assumption by maintaining bounds on truth values which can have probabilistic semantics, yielding resilience to incomplete knowledge.

* 10 pages (incl. references), 38 pages supplementary, 7 figures, 9 tables, 6 algorithms. In submission to NeurIPS 2020 
Viaarxiv icon