Abstract:Theory of Mind (ToM) in Large Language Models (LLMs) refers to their capacity for reasoning about mental states, yet failures in this capacity often manifest as systematic implicit bias. Evaluating this bias is challenging, as conventional direct-query methods are susceptible to social desirability effects and fail to capture its subtle, multi-dimensional nature. To this end, we propose an evaluation framework that leverages the Stereotype Content Model (SCM) to reconceptualize bias as a multi-dimensional failure in ToM across Competence, Sociability, and Morality. The framework introduces two indirect tasks: the Word Association Bias Test (WABT) to assess implicit lexical associations and the Affective Attribution Test (AAT) to measure covert affective leanings, both designed to probe latent stereotypes without triggering model avoidance. Extensive experiments on 8 State-of-the-Art LLMs demonstrate our framework's capacity to reveal complex bias structures, including pervasive sociability bias, multi-dimensional divergence, and asymmetric stereotype amplification, thereby providing a more robust methodology for identifying the structural nature of implicit bias.
Abstract:In recent years, graph neural networks (GNNs) have shown great potential in addressing various graph structure-related downstream tasks. However, recent studies have found that current GNNs are susceptible to malicious adversarial attacks. Given the inevitable presence of adversarial attacks in the real world, a variety of defense methods have been proposed to counter these attacks and enhance the robustness of GNNs. Despite the commendable performance of these defense methods, we have observed that they tend to exhibit a structural bias in terms of their defense capability on nodes with low degree (i.e., tail nodes), which is similar to the structural bias of traditional GNNs on nodes with low degree in the clean graph. Therefore, in this work, we propose a defense strategy by including hetero-homo augmented graph construction, $k$NN augmented graph construction, and multi-view node-wise attention modules to mitigate the structural bias of GNNs against adversarial attacks. Notably, the hetero-homo augmented graph consists of removing heterophilic links (i.e., links connecting nodes with dissimilar features) globally and adding homophilic links (i.e., links connecting nodes with similar features) for nodes with low degree. To further enhance the defense capability, an attention mechanism is adopted to adaptively combine the representations from the above two kinds of graph views. We conduct extensive experiments to demonstrate the defense and debiasing effect of the proposed strategy on benchmark datasets.