We propose a semantically-aware novel paradigm to perform image extrapolation that enables the addition of new object instances. All previous methods are limited in their capability of extrapolation to merely extending the already existing objects in the image. However, our proposed approach focuses not only on (i) extending the already present objects but also on (ii) adding new objects in the extended region based on the context. To this end, for a given image, we first obtain an object segmentation map using a state-of-the-art semantic segmentation method. The, thus, obtained segmentation map is fed into a network to compute the extrapolated semantic segmentation and the corresponding panoptic segmentation maps. The input image and the obtained segmentation maps are further utilized to generate the final extrapolated image. We conduct experiments on Cityscapes and ADE20K-bedroom datasets and show that our method outperforms all baselines in terms of FID, and similarity in object co-occurrence statistics.
Author stylized rewriting is the task of rewriting an input text in a particular author's style. Recent works in this area have leveraged Transformer-based language models in a denoising autoencoder setup to generate author stylized text without relying on a parallel corpus of data. However, these approaches are limited by the lack of explicit control of target attributes and being entirely data-driven. In this paper, we propose a Director-Generator framework to rewrite content in the target author's style, specifically focusing on certain target attributes. We show that our proposed framework works well even with a limited-sized target author corpus. Our experiments on corpora consisting of relatively small-sized text authored by three distinct authors show significant improvements upon existing works to rewrite input texts in target author's style. Our quantitative and qualitative analyses further show that our model has better meaning retention and results in more fluent generations.
While recent advances in language modeling have resulted in powerful generation models, their generation style remains implicitly dependent on the training data and can not emulate a specific target style. Leveraging the generative capabilities of a transformer-based language models, we present an approach to induce certain target-author attributes by incorporating continuous multi-dimensional lexical preferences of an author into generative language models. We introduce rewarding strategies in a reinforcement learning framework that encourages the use of words across multiple categorical dimensions, to varying extents. Our experiments demonstrate that the proposed approach can generate text that distinctively aligns with a given target author's lexical style. We conduct quantitative and qualitative comparisons with competitive and relevant baselines to illustrate the benefits of the proposed approach.
Semantic parsing is the task of obtaining machine-interpretable representations from natural language text. We consider one such formal representation - First-Order Logic (FOL) and explore the capability of neural models in parsing English sentences to FOL. We model FOL parsing as a sequence to sequence mapping task where given a natural language sentence, it is encoded into an intermediate representation using an LSTM followed by a decoder which sequentially generates the predicates in the corresponding FOL formula. We improve the standard encoder-decoder model by introducing a variable alignment mechanism that enables it to align variables across predicates in the predicted FOL. We further show the effectiveness of predicting the category of FOL entity - Unary, Binary, Variables and Scoped Entities, at each decoder step as an auxiliary task on improving the consistency of generated FOL. We perform rigorous evaluations and extensive ablations. We also aim to release our code as well as large scale FOL dataset along with models to aid further research in logic-based parsing and inference in NLP.
Recently, research efforts have gained pace to cater to varied user preferences while generating text summaries. While there have been attempts to incorporate a few handpicked characteristics such as length or entities, a holistic view around these preferences is missing and crucial insights on why certain characteristics should be incorporated in a specific manner are absent. With this objective, we provide a categorization around these characteristics relevant to the task of text summarization: one, focusing on what content needs to be generated and second, focusing on the stylistic aspects of the output summaries. We use our insights to provide guidelines on appropriate methods to incorporate various classes characteristics in sequence-to-sequence summarization framework. Our experiments with incorporating topics, readability and simplicity indicate the viability of the proposed prescriptions