Abstract:Traditional domain generalization approaches predominantly focus on leveraging target domain-aware features while overlooking the critical role of source domain-specific characteristics, particularly in federated settings with inherent data isolation. To address this gap, we propose the Federated Source Domain Awareness Framework (FedSDAF), the first method to systematically exploit source domain-aware features for enhanced federated domain generalization (FedDG). The FedSDAF framework consists of two synergistic components: the Domain-Invariant Adapter, which preserves critical domain-invariant features, and the Domain-Aware Adapter, which extracts and integrates source domain-specific knowledge using a Multihead Self-Attention mechanism (MHSA). Furthermore, we introduce a bidirectional knowledge distillation mechanism that fosters knowledge sharing among clients while safeguarding privacy. Our approach represents the first systematic exploitation of source domain-aware features, resulting in significant advancements in model generalization capability.Extensive experiments on four standard benchmarks (OfficeHome, PACS, VLCS, and DomainNet) show that our method consistently surpasses state-of-the-art federated domain generalization approaches, with accuracy gains of 5.2-13.8%. The source code is available at https://github.com/pizzareapers/FedSDAF.
Abstract:It is critical that the models pay attention not only to accuracy but also to the certainty of prediction. Uncertain predictions of deep models caused by noisy data raise significant concerns in trustworthy AI areas. To explore and handle uncertainty due to intrinsic data noise, we propose a novel method called ALUM to simultaneously handle the model uncertainty and data uncertainty in a unified scheme. Rather than solely modeling data uncertainty in the ultimate layer of a deep model based on randomly selected training data, we propose to explore mined adversarial triplets to facilitate data uncertainty modeling and non-parametric uncertainty estimations to compensate for the insufficiently trained latent model layers. Thus, the critical data uncertainty and model uncertainty caused by noisy data can be readily quantified for improving model robustness. Our proposed ALUM is model-agnostic which can be easily implemented into any existing deep model with little extra computation overhead. Extensive experiments on various noisy learning tasks validate the superior robustness and generalization ability of our method. The code is released at https://github.com/wwzjer/ALUM.